Skip to main content
Log in

Nod2 Mutation Enhances NF-kappaB Activity and Bacterial Killing Activity of Macrophages

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

NOD2, an intracellular sensor of bacteria, are linked to increased susceptibility to bacteria in Crohn’s disease (CD). The NOD2 protein is expressed mainly by macrophages and dendritic cells. This study is to examine the role of NOD2 in the innate response of macrophages to bacterial challenge. First, peritoneal macrophages and alveolar macrophages were harvested from WT, Nod22939iC, as well as TLR4−/− mice and incubated with E. coli or P. aeruginosa. Bacterial killing activity; IL-1β and TLR4 protein expression; NF-κB DNA binding activity assay; as well as IL-1β, TNFα, TLR2, TLR4 and TLR9 mRNA expression of macrophages were examined. We found that alveolar macrophages and peritoneal macrophages of Nod22939iC mice but not WT mice or TLR4−/− mice demonstrated a significant increase of E. coli killing activity. Bacterial challenge also induced a significant increase of pro-IL-1β protein expression; NF-κB DNA binding activity; as well as IL-1β and TNFα mRNA expression of the peritoneal macrophages in Nod22939iC mice. Collectively, the increase of bacterial killing activity, IL-1β expression, and NF-κB DNA binding activity of macrophages in Nod22939iC mice suggests that NOD2 is a positive regulator of NF-κB/IL-1β-mediated innate response to bacteria challenge in Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hugot, J. P., M. Chamaillard, H. Zouali, S. Lesage, J. P. Cezard, J. Belaiche, S. Almer, C. Tysk, C. A. O’Morain, M. Gassull, et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603.

    Article  CAS  PubMed  Google Scholar 

  2. Ogura, Y., D. K. Bonen, N. Inohara, D. L. Nicolae, F. F. Chen, R. Ramos, H. Britton, T. Moran, R. Karaliuskas, R. H. Duerr, et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606.

    Article  CAS  PubMed  Google Scholar 

  3. Girardin, S. E., I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne, G. Thomas, D. J. Philpott, and P. J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278(11):8869–8872.

    Article  CAS  PubMed  Google Scholar 

  4. Hsu, L. C., S. R. Ali, S. McGillivray, P. H. Tseng, S. Mariathasan, E. W. Humke, L. Eckmann, J. J. Powell, V. Nizet, V. M. Dixit, et al. 2008. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc. Natl. Acad. Sci. U. S. A. 105(22):7803–7808.

    Article  CAS  PubMed  Google Scholar 

  5. Traub, S., N. Kubasch, S. Morath, M. Kresse, T. Hartung, R. R. Schmidt, and C. Hermann. 2004. Structural requirements of synthetic muropeptides to synergize with lipopolysaccharide in cytokine induction. J. Biol. Chem. 279(10):8694–8700.

    Article  CAS  PubMed  Google Scholar 

  6. Uehara, A., S. Yang, Y. Fujimoto, K. Fukase, S. Kusumoto, K. Shibata, S. Sugawara, and H. Takada. 2005. Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human monocytic cells in culture. Cell. Microbiol. 7(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  7. Rothwarf, D. M., and M. Karin. 1999. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci. STKE. 1999(5):RE1.

    Article  CAS  PubMed  Google Scholar 

  8. Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18:621–663.

    Article  CAS  PubMed  Google Scholar 

  9. Gan, H. T., Y. Q. Chen, and Q. Ouyang. 2005. Sulfasalazine inhibits activation of nuclear factor-kappaB in patients with ulcerative colitis. J. Gastroenterol. Hepatol. 20(7):1016–1024.

    CAS  PubMed  Google Scholar 

  10. Maeda, S., L. C. Hsu, H. Liu, L. A. Bankston, M. Iimura, M. F. Kagnoff, L. Eckmann, and M. Karin. 2005. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710):734–738.

    Article  CAS  PubMed  Google Scholar 

  11. Sayek, I. 1997. Animal models for intra-abdominal infection. Hepatogastroenterology 44(16):923–926.

    CAS  PubMed  Google Scholar 

  12. van Westerloo, D. J., S. Weijer, M. J. Bruno, A. F. de Vos, C. Van’t Veer, and T. van der Poll. 2005. Toll-like receptor 4 deficiency and acute pancreatitis act similarly in reducing host defense during murine Escherichia coli peritonitis. Crit. Care Med. 33(5):1036–1043.

    Article  PubMed  Google Scholar 

  13. Chen, L. W., L. Egan, Z. W. Li, F. R. Greten, M. F. Kagnoff, and M. Karin. 2003. The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat. Med. 9(5):575–581.

    Article  CAS  PubMed  Google Scholar 

  14. Li, N., and M. Karin. 1998. Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc. Natl. Acad. Sci. U. S. A. 95(22):13012–13017.

    Article  CAS  PubMed  Google Scholar 

  15. Fiocchi, C. 1998. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115(1):182–205.

    Article  CAS  PubMed  Google Scholar 

  16. Podolsky, D. K. 2002. Inflammatory bowel disease. N. Engl. J. Med. 347(6):417–429.

    Article  CAS  PubMed  Google Scholar 

  17. Wahl, C., S. Liptay, G. Adler, and R. M. Schmid. 1998. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J. Clin. Invest. 101(5):1163–1174.

    Article  CAS  PubMed  Google Scholar 

  18. Hisamatsu, T., M. Suzuki, H. C. Reinecker, W. J. Nadeau, B. A. McCormick, and D. K. Podolsky. 2003. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124(4):993–1000.

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe, T., A. Kitani, P. J. Murray, and W. Strober. 2004. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5(8):800–808.

    Article  CAS  PubMed  Google Scholar 

  20. Mahida, Y. R., and V. E. Rolfe. 2004. Host–bacterial interactions in inflammatory bowel disease. Clin. Sci. (Lond.). 107(4):331–341.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Science Council (NSC932314B075B005), Kaohsiung Veterans General Hospital (VGHNSU93-04, VGHKS93-94), National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, and VTY Joint Research Program, Tsou’s Foundation (VTY92-P3-19) to CLW. The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Wei Chen.

Additional information

Tzyy-Bin Tsay and Chien-Jen Chang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsay, TB., Chang, CJ., Chen, PH. et al. Nod2 Mutation Enhances NF-kappaB Activity and Bacterial Killing Activity of Macrophages. Inflammation 32, 372–378 (2009). https://doi.org/10.1007/s10753-009-9145-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9145-z

KEY WORDS

Navigation