Skip to main content
Log in

An Interaction Between Genetic Factors and Gender Determines the Magnitude of the Inflammatory Response in the Mouse Air Pouch Model of Acute Inflammation

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The widely used mouse air pouch model of acute inflammation is inducible in a variety of inbred strains, but the potential influence of genetic background and gender on inflammation severity has never been examined. We directly compared the degree of inflammation induced in the air pouch model across four commonly utilized inbred strains in both male and female mice. We then applied an in silico mapping method to identify loci potentially associated with determining inflammation severity for each gender. Air pouches were induced by subcutaneous injection 3 (3 cc) and 5 (1.5 cc) days prior to the experiment. 4h after carrageenan injection, exudates were retrieved and leukocyte concentration quantified using a hemocytometer. The in silico mapping method was applied as described below. The strain order for mean leukocyte count/mL in inflamed exudates differed between genders. In males, the order was C57BL/6J > BALB/cByJ > DBA/2J > DBA/1J, while in females the order was BALB/cByJ > DBA/2J > C57BL/6J > DBA/1J. The difference in inflammation severity between genders reached significance only in C57BL/6J mice. Independent in silico analysis based on phenotypic data from male versus female mice identified distinct sets of loci as potentially associated with the exudate count reached. We conclude that the degree of inflammation induced in the mouse air pouch model of inflammation is strain-specific and, therefore, genetically based, and the pattern of interstrain differences is altered in male relative to female mice. The loci identified by in silico mapping likely contain genes with differential roles in determining this phenotype between genders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbosa, J. N., M. A. Barbosa, and A. P. Aguas. 2004. Inflammatory responses and cell adhesion to self-assembled monolayers of alkanethiolates on gold. Biomaterials 25:2557–2563.

    Article  CAS  PubMed  Google Scholar 

  2. Yamamoto, Y., H. Kanazawa, M. Shimamura, M. Ueki, and T. Hazato. 1998. Inhibitory action of spinorphin, an endogenous regulator of enkephalin-degrading enzymes, on carrageenan-induced polymorphonuclear neutrophil accumulation in mouse air-pouches. Life Sci. 62:1767–1773.

    Article  CAS  PubMed  Google Scholar 

  3. Lee, J. H., J. K. Choi, M. S. Noh, B. Y. Hwang, Y. S. Hong, and J. J. Lee. 2004. Anti-inflammatory effect of kamebakaurin in in vivo animal models. Planta Med. 70:526–530.

    CAS  PubMed  Google Scholar 

  4. Montesinos, M. C., A. Desai, D. Delano, J. F. Chen, J. S. Fink, M. A. Jacobson, and B. N. Cronstein. 2003. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum. 48:240–247.

    Article  CAS  PubMed  Google Scholar 

  5. Nickerson-Nutter, C. L. and E. D. Medvedeff. 1996. The effect of leukotriene synthesis inhibitors in models of acute and chronic inflammation. Arthritis Rheum. 39:515–521.

    CAS  PubMed  Google Scholar 

  6. Posadas, I., M. C. Terencio, I. Guillen, M. L. Ferrandiz, J. Coloma, M. Paya, and M. J. Alcaraz. 2000. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn Schmiedebergs Arch. Pharmacol. 361:98–106.

    Article  CAS  PubMed  Google Scholar 

  7. Adarichev, V. A., J. C. Valdez, T. Bardos, A. Finnegan, K. Mikecz, and T. T. Glant. 2003. Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. J. Immunol. 170:2283–2292.

    CAS  PubMed  Google Scholar 

  8. Holmdahl, R., M. Karlsson, M. E. Andersson, L. Rask, and L. Andersson. 1989. Localization of a critical restriction site on the I-A beta chain that determines susceptibility to collagen-induced arthritis in mice. Proc. Natl. Acad. Sci. U.S.A. 86:9475–9479.

    Google Scholar 

  9. Yang, H. T., J. Jirholt, L. Svensson, M. Sundvall, L. Jansson, U. Pettersson, and R. Holmdahl. 1999. Identification of genes controlling collagen-induced arthritis in mice: Striking homology with susceptibility loci previously identified in the rat. J. Immunol. 163:2916–2921.

    CAS  PubMed  Google Scholar 

  10. Jirholt, J., A. Cook, T. Emahazion, M. Sundvall, L. Jansson, N. Nordquist, U. Pettersson, and R. Holmdahl. 1998. Genetic linkage analysis of collagen-induced arthritis in the mouse. Eur. J. Immunol. 28:3321–3328.

    Article  CAS  PubMed  Google Scholar 

  11. Brand, D. D., A. H. Kang, and E. F. Rosloniec. 2004. The mouse model of collagen-induced arthritis. Methods Mol. Med. 102:295–312.

    CAS  PubMed  Google Scholar 

  12. Otto, J. M., R. Chandrasekeran, C. Vermes, K. Mikecz, A. Finnegan, S. E. Rickert, J. T. Enders, and T. T. Glant. 2000. A genome scan using a novel genetic cross identifies new susceptibility loci and traits in a mouse model of rheumatoid arthritis. J. Immunol. 165:5278–5286.

    CAS  PubMed  Google Scholar 

  13. White, P., S. A. Liebhaber, and N. E. Cooke. 2002. 129×1/SvJ mouse strain has a novel defect in inflammatory cell recruitment. J. Immunol. 168:869–874.

    CAS  PubMed  Google Scholar 

  14. Goulet, J. L., R. S. Byrum, M. L. Key, M. Nguyen, V. A. Wagoner, and B. H. Koller. 2000. Genetic factors determine the contribution of leukotrienes to acute inflammatory responses. J. Immunol. 164:4899–4907.

    CAS  PubMed  Google Scholar 

  15. Joe, B., M. R. Garrett, H. Dene, E. F. Remmers, and H. Meng. 2003. Genetic susceptibility to carrageenan-induced innate inflammatory response in inbred strains of rats. Eur. J. Immunogenet. 30:243–247.

    Article  CAS  PubMed  Google Scholar 

  16. Remmers, E. F., B. Joe, M. M. Griffiths, D. E. Dobbins, S. V. Dracheva, A. Hashiramoto, T. Furuya, J. L. Salstrom, J. Wang, P. S. Gulko, G. W. Cannon, and R. L. Wilder. 2002. Modulation of multiple experimental arthritis models by collagen-induced arthritis quantitative trait loci isolated in congenic rat lines: Different effects of non-major histocompatibility complex quantitative trait loci in males and females. Arthritis Rheum. 46:2225–2234.

    Article  CAS  PubMed  Google Scholar 

  17. Griffiths, M. M., and E. F. Remmers. 2001. Genetic analysis of collagen-induced arthritis in rats: A polygenic model for rheumatoid arthritis predicts a common framework of cross-species inflammatory/autoimmune disease loci. Immunol. Rev. 184:172–183.

    Article  CAS  PubMed  Google Scholar 

  18. Butts, C., and E. Sternberg. 2004. Different approaches to understanding autoimmune rheumatic diseases: The neuroimmunoendocrine system. Best Pract. Res. Clin. Rheumatol. 18:125–139.

    Article  CAS  PubMed  Google Scholar 

  19. Symmons, D. P. 2002. Epidemiology of rheumatoid arthritis: determinants of onset, persistence and outcome. Best Pract. Res. Clin. Rheumatol. 16:707–722.

    Article  PubMed  Google Scholar 

  20. Voulgari, P. V., P. Katsimbri, Y. Alamanos, and A. A. Drosos. 2002. Gender and age differences in systemic lupus erythematosus. A study of 489 Greek patients with a review of the literature. Lupus 11:722–729.

    Article  CAS  PubMed  Google Scholar 

  21. Gregersen, P. K. 2003. Teasing apart the complex genetics of human autoimmunity: Lessons from rheumatoid arthritis. Clin. Immunol. 107:1–9.

    Article  CAS  PubMed  Google Scholar 

  22. Steer, S., and A. J. MacGregor. 2003. Genetic epidemiology: Disease susceptibility and severity. Curr. Opin. Rheumatol. 15:116–121.

    Article  PubMed  Google Scholar 

  23. Tsao, B. P. 2003. The genetics of human systemic lupus erythematosus. Trends Immunol. 24:595–602.

    Article  CAS  PubMed  Google Scholar 

  24. Figueroa, J., J. Andreoni, and P. Densen. 1993. Complement deficiency states and meningococcal disease. Immunol. Res. 12:295–311.

    CAS  PubMed  Google Scholar 

  25. Cronstein, B. N., D. Naime, and E. Ostad. 1993. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin. Invest. 92:2675–2682.

    CAS  PubMed  Google Scholar 

  26. Grupe, A., S. Germer, J. Usuka, D. Aud, J. K. Belknap, R. F. Klein, M. K. Ahluwalia, R. Higuchi, and G. Peltz. 2001. In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918.

    Article  CAS  PubMed  Google Scholar 

  27. Smith, J. D., D. James, H. M. Dansky, K. M. Wittkowski, K. J. Moore, and J. L. Breslow. 2003. In silico quantitative trait locus map for atherosclerosis susceptibility in apolipoprotein E-deficient mice. Arteriosc. Thromb. Vasc. Biol. 23:117–122.

    CAS  Google Scholar 

  28. Moore, V. L., V. M. Mondloch, G. M. Pedersen, D. J. Schrier, and E. M. Allen. 1981. Strain variation in BCG-induced chronic pulmonary inflammation in mice: Control by a cyclophosphamide-sensitive thymus-derived suppressor cell. J. Immunol. 127:339–342.

    CAS  PubMed  Google Scholar 

  29. Whitehead, G. S., J. K. Walker, K. G. Berman, W. M. Foster, and D. A. Schwartz. 2003. Allergen-induced airway disease is mouse strain dependent. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L32–L42.

    CAS  PubMed  Google Scholar 

  30. Zhang, L. Y., R. C. Levitt, and S. R. Kleeberger. 1995. Differential susceptibility to ozone-induced airways hyperreactivity in inbred strains of mice. Exp. Lung. Res. 21:503–518.

    CAS  PubMed  Google Scholar 

  31. Listwak, S., R. M. Barrientos, G. Koike, S. Ghosh, M. Gomez, B. Misiewicz, and E. M. Sternberg. 1999. Identification of a novel inflammation-protective locus in the Fischer rat. Mammal Genome 10:362–365.

    CAS  Google Scholar 

  32. Chesler, E. J., S. L. Rodriguez-Zas, and J. S. Mogil. 2001. In silico mapping of mouse Quantitative trait loci. Science 294:2423.

    Article  CAS  PubMed  Google Scholar 

  33. Darvasi, A. 2001. In silico mapping of mouse quantitative trait loci. Science 294:2423.

    CAS  PubMed  Google Scholar 

  34. Liao, G., J. Wang, J. Guo, J. Allard, J. Cheng, A. Ng, S. Shafer, A. Puech, J. D. McPherson, D. Foernzler, G. Peltz, and J. Usuka. 2004. In silico genetics: Identification of a functional element regulating H2-Ealpha gene expression. Science 306:690–695.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce N. Cronstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delano, D.L., Montesinos, M.C., D'Eustachio, P. et al. An Interaction Between Genetic Factors and Gender Determines the Magnitude of the Inflammatory Response in the Mouse Air Pouch Model of Acute Inflammation. Inflammation 29, 1–7 (2005). https://doi.org/10.1007/s10753-006-8962-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-006-8962-6

Key Words

Navigation