Skip to main content

Advertisement

Log in

A Bactericidal Cecropin-A Peptide with a Stabilized α-Helical Structure Possess an Increased Killing Capacity But No Proinflammatory Activity

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Antibacterial peptides are part of the innate immune system in a variety of different species including humans. Some of these peptides have also been shown to have effects on immune competent cells such as professional phagocytes. We have recently shown that a cecropin-like peptide from Helicobacter pylori, Hp(2–20), in addition to being bactericidal possesses proinflammatory effects and can recruit and activate neutrophils as well as monocytes. It is well established that cecropins have the ability to adopt amphipathic α-helices, which is thought to be required for their bactericidal activity. In this study we show the same structural requirements for Hp(2–20). Breaking the helical structure of Hp(2–20) reduced the antibacterial effect and abolished its proinflammatory activity. A C-terminal truncated cecropin A peptide that highly resembles Hp(2–20) failed to activate neutrophils and computer-based structural simulations revealed a difference between the two peptides in the stability of their helical structures. A hybrid peptide with amino acid substitutions stabilizing the α-helical structure of the truncated cecropin A peptide did not introduce any proinflammatory activity; the bactericidal activity was, however, increased. We thus conclude that the proinflammatory effect of Hp(2–20) is a unique sequence-specific feature of the peptide and the ability to adopt a stable amphipathic helix is a necessary but not sufficient criterion for the functional dualism of the peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boman, H. G. 2000. Innate immunity and the normal microflora. Immunol Rev. 173:5–16.

    Article  PubMed  Google Scholar 

  2. Epand, R. M. and H. J. Vogel. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1462:11–28.

    PubMed  Google Scholar 

  3. Putsep, K., C. I. Branden, H. G. Boman, and S. Normark. 1999. Antibacterial peptide from H. pylori. Nature. 398:671–672.

    Article  PubMed  Google Scholar 

  4. Allen, L. A. 2000. Modulating phagocyte activation: the pros and cons of Helicobacter pylori virulence factors. J. Exp. Med. 191:1451–1454.

    Article  PubMed  Google Scholar 

  5. Gudmundsson, G. H., and B. Agerberth. 1999. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J. Immunol. Methods 232:45–54.

    Article  PubMed  Google Scholar 

  6. Graham, D. Y. 2000. Helicobacter pylori infection is the primary cause of gastric cancer. J Gastroenterol. 35:90–97.

    PubMed  Google Scholar 

  7. Betten, A., J. Bylund, T. Cristophe, F. Boulay, A. Romero, K. Hellstrand, and C. Dahlgren, C. 2001. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J. Clin. Invest. 108:1221–1228.

  8. Bylund, J., T. Christophe, F. Boulay, T. Nystrom, A. Karlsson, and C. Dahlgren. 2001. Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob. Agents Chemother. 45:1700–1704.

    Article  PubMed  Google Scholar 

  9. de Paulis, A., N. Prevete, I. Fiorentino, A. F. Walls, M. Curto, A. Petraroli, V. Castaldo, P. Ceppa, R. Fiocca, and G. Marone. 2004. Basophils infiltrate human gastric mucosa at sites of Helicobacter pylori infection, and exhibit chemotaxis in response to H. pylori-derived peptide Hp(2–20). J. Immunol. 172:7734–7743.

    PubMed  Google Scholar 

  10. Bylund, J. 2002. Recognition by leukocyte formyl peptide receptors: promiscuous binding or pattern recognition? Medical dissertation. Göteborg University, Göteborg.

  11. Bylund, J., A. Karlsson, F. Boulay, and C. Dahlgren, 2002. Lipopolysaccharide-induced granule mobilization and priming of the neutrophil response to Helicobacter pylori peptide Hp(2–20), which activates formyl peptide receptor-like 1. Infect. Immun. 70:2908–2914.

    Article  PubMed  Google Scholar 

  12. Boyum, A., D. Lovhaug, L. Tresland, and E. M. Nordlie, 1991. Separation of leucocytes: Improved cell purity by fine adjustments of gradient medium density and osmolality. Scand. J. Immunol. 34:697–712.

    PubMed  Google Scholar 

  13. Dahlgren, C., and A. Karlsson, 1999. Respiratory burst in human neutrophils. J. Immunol. Methods 232:3–14.

    Article  PubMed  Google Scholar 

  14. Hultmark, D., A. Engstrom, K. Andersson, H. Steiner, H. Bennich, and H. G. Boman, 1983. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. Embo. J. 2:571–576.

    PubMed  Google Scholar 

  15. Andreu, D., R. B. Merrifield, H. Steiner, and H. G. Boman, 1985. N-terminal analogues of cecropin A: Synthesis, antibacterial activity, and conformational properties. Biochemistry 24:1683–1688.

    Article  PubMed  Google Scholar 

  16. Clark, R. A. 1999. Activation of the neutrophil respiratory burst oxidase. J. Infect. Dis. 179(Suppl 2):S309–S317.

    PubMed  Google Scholar 

  17. Holak, T. A., A. Engstrom, P. J. Kraulis, G. Lindeberg, H. Bennich, T. A. Jones, A. M. Gronenborn, and G. M. Clore. 1988. The solution conformation of the antibacterial peptide cecropin A: A nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27:7620–1729.

    Article  PubMed  Google Scholar 

  18. Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462:55–70.

    PubMed  Google Scholar 

  19. Christensen, B., J. Fink, R. B. Merrifield, and D. Mauzerall. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA 85:5072–5076.

    PubMed  Google Scholar 

  20. Gazit, E., I. R. Miller, P. C. Biggin, M. S. Sansom, and Y. Shai. 1996. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J. Mol. Biol. 258:860–870.

    Article  PubMed  Google Scholar 

  21. De Lucca, A. J., T. J. Jacks, and K. A. Brogden. 1995. Binding between lipopolysaccharide and cecropin A. Mol. Cell Biochem. 151:141–148.

    Article  PubMed  Google Scholar 

  22. Ye, R. D. and F. Boulay. 1997. Structure and function of leukocyte chemoattractant receptors. Adv. Pharmacol. 39:221–289.

    PubMed  Google Scholar 

  23. Fu, H., L. Bjorkman, P. Janmey, A. Karlsson, J. Karlsson, C. Movitz, and C. Dahlgren. 2004. The two neutrophil members of the formylpeptide receptor family activate the NADPH-oxidase through signals that differ in sensitivity to a gelsolin derived phosphoinositide-binding peptide. BMC Cell Biol. 5:50.

    Article  PubMed  Google Scholar 

  24. Fu, H., J. Bylund, A. Karlsson, S. Pellme, and C. Dahlgren. 2004. The mechanism for activation of the neutrophil NADPH-oxidase by the peptides formyl-Met-Leu-Phe and Trp-Lys-Tyr-Met-Val-Met differs from that for interleukin-8. Immunology 112:201–210.

    Article  PubMed  Google Scholar 

  25. Dahlgren, C., T. Christophe, F. Boulay, P. N. Madianos, M. J. Rabiet, and A. Karlsson. 2000. The synthetic chemoattractant Trp-Lys-Tyr-Met-Val-DMet activates neutrophils preferentially through the lipoxin A(4) receptor. Blood 95:1810–1818.

    PubMed  Google Scholar 

  26. Le, Y., W. Gong, H. L. Tiffany, A. Tumanov, S. Nedospasov, W. Shen, N. M. Dunlop, J. L. Gao, P. M. Murphy, J. J. Oppenheim, and J. M. Wang. 2001. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 21:RC123.

    PubMed  Google Scholar 

  27. Hartt, J. K., T. Liang, A. Sahagun-Ruiz, J. M. Wang, J. L. Gao, and P. M. Murphy. 2000. The HIV-1 cell entry inhibitor T-20 potently chemoattracts neutrophils by specifically activating the N-formylpeptide receptor. Biochem. Biophys. Res. Commun. 272:699–704.

    Article  PubMed  Google Scholar 

  28. Deng, X., H. Ueda, S. B. Su, W. Gong, N. M. Dunlop, J. L. Gao, P. M. Murphy, and J. M. Wang. 1999. A synthetic peptide derived from human immunodeficiency virus type 1 gp 120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. Blood 94:1165–1173.

    PubMed  Google Scholar 

  29. Chiang, N., I. M. Fierro, K. Gronert, and C. N. Serhan. 2000. Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J. Exp. Med. 191:1197–1208.

    Article  PubMed  Google Scholar 

  30. Badolato, R., J. M. Wang, W. J. Murphy, A. R. Lloyd, D. F. Michiel, L.L Bausserman, D. J. Kelvin, and J. J. Oppenheim. 1994. Serum amyloid A is a chemoattractant: Induction of migration, adhesion, and tissue infiltration of monocytes and polymorphonuclear leukocytes. J. Exp. Med. 180:203–209.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claes Dahlgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, H., Björstad, Å., Dahlgren, C. et al. A Bactericidal Cecropin-A Peptide with a Stabilized α-Helical Structure Possess an Increased Killing Capacity But No Proinflammatory Activity. Inflammation 28, 337–343 (2004). https://doi.org/10.1007/s10753-004-6644-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-004-6644-9

Keywords

Navigation