Skip to main content
Log in

The PAMELA space mission for antimatter and dark matter searches in space

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The PAMELA satellite-borne experiment has presented new results on cosmic-ray antiparticles that can be interpreted in terms of DM annihilation or pulsar contribution. The instrument was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectrum in order to search for exotic sources. PAMELA is also searching for primordial antinuclei (anti-helium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. This talk illustrates the most recent scientific results obtained by the PAMELA experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Picozza, P., et al.: Astropart. Phys. 27, 296 (2007)

    Article  ADS  Google Scholar 

  2. Geer, S.H., Kennedy, D.C.: LANL astro-ph/9809101; Astrophys. J. 532, 648 (2000)

    Article  ADS  Google Scholar 

  3. Adriani, O., et al.: Nature 458, 607–609 (2009)

    Article  ADS  Google Scholar 

  4. Adriani, O., et al.: Astropart. Phys. 34, 1–11 (2010)

    Article  ADS  Google Scholar 

  5. Adriani, O., et al.: Phys. Rev. Lett. 102, 051101 (2009)

    Article  ADS  Google Scholar 

  6. Adriani, O., et al.: Phys. Rev. Lett. 105, 121101 (2010)

    Article  ADS  Google Scholar 

  7. Adriani, O., et al.: Phys. Rev. Lett. 106, 201101 (2011)

    Article  ADS  Google Scholar 

  8. Boezio, M., et al.: Astrophys. J. 487, 415 (1997)

    Article  ADS  Google Scholar 

  9. Boezio, M., et al.: Astrophys. J. 561, 787 (2001)

    Article  ADS  Google Scholar 

  10. Aguilar, M., et al.: Phys. Rep. 366, 331 (2002)

    Article  ADS  Google Scholar 

  11. Orito, S., et al.: Phys. Rev. Lett. 84, 1078 (2000)

    Article  ADS  Google Scholar 

  12. Abe, K., et al.: Phys. Lett. B 670, 103 (2008)

    Article  ADS  Google Scholar 

  13. Beach, A.S., et al.: Phys. Rev. Lett. 87, 271101 (2001)

    Article  ADS  Google Scholar 

  14. Donato, F., et al.: Astrophys. J. 563, 172 (2001)

    Article  ADS  Google Scholar 

  15. Ptuskin, V.S., et al.: Astrophys. J. 642, 902 (2006)

    Article  ADS  Google Scholar 

  16. Donato, F., et al.: Phys. Rev. Lett. 102, 071301 (2009)

    Article  ADS  Google Scholar 

  17. Müller, D., Tang, K.K.: Astrophys. J. 312, 183–194 (1987)

    Article  ADS  Google Scholar 

  18. Golden, R.L., et al.: Astrophys. J. 436, 769–775 (1994)

    Article  ADS  Google Scholar 

  19. Golden, R.L., et al.: Astrophys. J. 457, L103–L106 (1996)

    Article  ADS  Google Scholar 

  20. Barwick, S.W., et al.: Astrophys. J. 482, L191–194 (1997)

    Article  ADS  Google Scholar 

  21. Boezio, M., et al.: Astrophys. J. 532, 653–669 (2000)

    Article  ADS  Google Scholar 

  22. Aguilar, M., et al.: Phys. Lett. B 646, 145 (2007)

    Article  ADS  Google Scholar 

  23. Beatty, J.J., et al.: Phys. Rev. Lett. 93, 241102–241105 (2004)

    Article  ADS  Google Scholar 

  24. Clem, J., Evenson, P.: In: Caballero, R., et al. (eds.) Proc. 30th Intl Cosmic Ray Conf., vol. 1, pp. 477–480. Universidad Nacional Autonoma de Mexico (2008)

  25. Moskalenko, I.V., Strong, A.W.: Astrophys. J. 493, 694–707 (1998)

    Article  ADS  Google Scholar 

  26. Kobayashi, T., et al.: In: Proc. 26th Int. Cosmic Ray Conf. (Salt Lake City), vol. 3, p. 61 (1999)

  27. Torii, S., et al.: Astrophys. J. 559, 973 (2001)

    Article  ADS  Google Scholar 

  28. Aharonian, F., et al.: Phys. Rev. Lett. 101, 261104 (2008)

    Article  ADS  Google Scholar 

  29. Abdo, A.A., et al. (The Fermi LAT): arXiv:0905.0025 (2009)

  30. Chang, J., et al.: Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  31. Alcaraz, J., et al.: Phys. Lett. B 484, 10–22 (2000)

    Article  ADS  Google Scholar 

  32. Barwick, S.W., et al.: Astrophys. J. 498, 779 (1998)

    Article  ADS  Google Scholar 

  33. DuVernois, M.A., et al.: Astrophys. J. 559, 296 (2001)

    Article  ADS  Google Scholar 

  34. Grimani, C., et al.: Astron. Astrophys. 392, 287–294 (2002)

    Article  ADS  Google Scholar 

  35. Adriani, O., et al.: J. Geophys. Res. 114, A12218 (2009)

    Article  Google Scholar 

  36. Selesnick, R.S., et al.: Geophys. Res. Lett. 34, 20 (2007)

    Article  Google Scholar 

  37. Adriani, O., et al.: Astrophys. J. 737, L29 (2011)

    Article  ADS  Google Scholar 

  38. Delahaye, T., et al.: Astron. Astrophys. 501, 821–833 (2009). arXiv:0809.5268v6

    Google Scholar 

  39. Boulares, A., et al.: Astrophys. J. 342, 807–813 (1989); Atoyan, A.M., et al.: Phys. Rev. D 52(6), 3265–3275 (1995)

  40. Grasso, D., et al.: Astropart. Phys. 32, 140–151 (2009)

  41. Hooper, D., Blasi, P., Serpico, P.: JCAP 1, 25 (2009)

    Article  ADS  Google Scholar 

  42. Profumo, S.: arXiv:0812.4457 (2008)

  43. Malyshev, D., Cholis, I., Gelfand, J.: Phys. Rev. D 80, 063005 (2009)

    Article  ADS  Google Scholar 

  44. Heyl, J.S., Gill, R., Hernquist, L.: arXiv:1005.1003 (2010)

  45. Ioka, K.: Prog. Theor. Phys. 123, 743–755 (2010). arXiv:0812.4851v4

  46. Blasi, P.: Phys. Rev. Lett. 103, 051104 (2009). arXiv:0903.2794

  47. Blasi, P., Serpico, P.D.: Phys. Rev. Lett. 103, 081103 (2009)

    Article  ADS  Google Scholar 

  48. Mertsch, P., Sarkar, S.: Phys. Rev. Lett. 103, 081104 (2009)

    Article  ADS  Google Scholar 

  49. Cirelli, M., et al.: Nucl. Phys. B 800, 204 (2008); Cirelli, M., et al.: Nucl. Phys. B 813, 1 (2009)

  50. Profumo, S.: Phys. Rev. D 72, 103521 (2005)

    Article  ADS  Google Scholar 

  51. Cholis, I., et al.: Phys. Rev. D 80, 123518 (2009)

    Article  ADS  Google Scholar 

  52. Cirelli, M., Cline, J.M.: arXiv:1005.1779v2 (2010)

  53. Kane, G., Lu, R., Watson, S.: Phys. Lett. B 681, 151 (2009)

    Article  ADS  Google Scholar 

  54. Hooper, D., Stebbins, A., Zurek, K.M.: Phys. Rev. D 79, 103513 (2009). arXiv:0812.3202

  55. Hooper, D., Zurek, K.M.: Phys. Rev. D 79, 103529 (2009). arXiv:0902.0593

  56. Bergstrom, L., Bringmann, T., Edsjo, J.: Phys. Rev. D 78, 103520 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boezio.

Additional information

J. Wu was on leave from School of Mathematics and Physics, China University of Geosciences, 430074 Wuhan, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boezio, M., Bruno, A., Adriani, O. et al. The PAMELA space mission for antimatter and dark matter searches in space. Hyperfine Interact 213, 147–158 (2012). https://doi.org/10.1007/s10751-011-0397-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0397-2

Keywords

Navigation