Skip to main content
Log in

Towards scaling up trapped ion quantum information processing

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Recent theoretical advances have identified several computational algorithms that can be implemented utilizing quantum information processing (QIP), which gives an exponential speedup over the corresponding (known) algorithms on conventional computers. QIP makes use of the counter-intuitive properties of quantum mechanics, such as entanglement and the superposition principle. Unfortunately it has so far been impossible to build a practical QIP system that outperforms conventional computers. Atomic ions confined in an array of interconnected traps represent a potentially scalable approach to QIP. All basic requirements have been experimentally demonstrated in one and two qubit experiments. The remaining task is to scale the system to many qubits while minimizing and correcting errors in the system. While this requires extremely challenging technological improvements, no fundamental roadblocks are currently foreseen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  2. DiVincenzo, D.P.: The physical implementation of quantum computation. In: Braunstein, S.L., Lo, H.K., Kok, P. (eds.) Scalable Quantum Computers. Wiley-VCH, Berlin (2001)

    Google Scholar 

  3. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995)

    Article  ADS  Google Scholar 

  4. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  5. Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C., Eschner, J., Blatt, R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)

    Article  ADS  Google Scholar 

  6. Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999)

    Article  ADS  Google Scholar 

  7. Solano, E., de Matos Filho, R.L., Zagury, N.: Deterministic Bell states and measurement of the motional state of two trapped ions. Phys. Rev. A 59, 2539–2542 (1999)

    Article  ADS  Google Scholar 

  8. Milburn, G.J., Schneider, S., James, D.F.V.: Ion trap quantum computing with warm ions. In: Braunstein, S.L., Lo, H.K., Kok, P. (eds.) Scalable Quantum Computers. Wiley-VCH, Berlin (2001)

    Google Scholar 

  9. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature 404, 256–258 (2000)

    Article  ADS  Google Scholar 

  10. Haljan, P.C., Brickman, K.A., Deslauriers, L., Lee, P.J., Monroe, C.: Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005)

    Article  ADS  Google Scholar 

  11. Haljan, P.C., Lee, P.J., Brickman, K.A., Acton, M., Deslauriers, L., Monroe, C.: Entanglement of trapped-ion clock states. Phys. Rev. A 72, 062316 (2005)

    Article  ADS  Google Scholar 

  12. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    Article  ADS  Google Scholar 

  13. Home, J.P., McDonnell, M.J., Lucas, D.M., Imreh, G., Keitch, B.C., Szwer, D.J., Thomas, N.R., Webster, S.C., Stacey, D.N., Steane, A.M.: Deterministic entanglement and tomography of ionŰspin qubits. New J. Phys. 8, 188 (2006)

    Article  ADS  Google Scholar 

  14. Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)

    Article  ADS  Google Scholar 

  15. Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Hume, D., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005)

    Article  ADS  Google Scholar 

  16. Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998)

    Google Scholar 

  17. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  18. Cirac, J.I., Zoller, P.: A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  Google Scholar 

  19. DeVoe, R.G.: Elliptical ion traps and trap arrays for quantum computation. Phys. Rev. A 58, 910–914 (1998)

    Article  ADS  Google Scholar 

  20. Duan, L.M., Blinov, B.B., Moehring, D.L., Monroe, C.: Scalable trapped ion quantum computation with a probabilistic ion-photon mapping. Quant. Inform. Comp. 4, 165–173 (2004)

    MathSciNet  Google Scholar 

  21. Wineland, D.J., Leibfried, D., Barrett, M.D., Ben-Kish, A., Bergquist, J.C., Blakestad, R.B., Bollinger, J.J., Britton, J., Chiaverini, J., DeMarco, B., Hume, D., Itano, W.M., Jensen, M., Jost, J.D., Knill, E., Koelemeij, J., Langer, C., Oskay, W., Ozeri, R., Reichle, R., Rosenband, T., Schaetz, T., Schmidt, P.O., :Seidelin, S. Quantum control, quantum information processing, and quantum-limited metrology with trapped ions. In: Hinds, E.A., Ferguson, A., Riis, E. (eds.) Laser Spectroscopy, Proceedings of the XVII International Conference on Laser Spectroscopy. Avemore, Scotland. World Scientific, Singapore (2005)

    Google Scholar 

  22. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    Article  ADS  Google Scholar 

  23. Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M., Blakestad, R., Britton, J., Itano, W., Jost, J., Knill, E., Langer, C., Ozeri, R., Wineland, D.: Realization of quantum error correction. Nature 432, 602–605 (2004)

    Article  ADS  Google Scholar 

  24. Schaetz, T., Barrett, M.D., Leibfried, D., Chiaverini, J.B.J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Wineland, D.J.: Enhanced quantum state detection efficiency through quantum information processing. Phys. Rev. Lett. 94, 010501 (2005)

    Article  ADS  Google Scholar 

  25. Chiaverini, J., Britton, J., Leibfried, D., Knill, E., Barrett, M.D., Blakestad, R.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Schaetz, T., Wineland, D.J.: Implementation of the semiclassical quantum fourier transform in a scalable system. Science 308, 997–1000 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Reichle, R., Leibfried, D., Knill, E., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Experimental purification of two-atom entanglement. Nature 443, 838–841 (2006)

    Article  ADS  Google Scholar 

  27. Wineland, D.J.: Trapped ions and quantum information processing. In: Martini, F.D., Monroe, C. (eds.) Experimental quantum computation and information. Proceedings of the International School of Physics “Enrico Fermi”. IOS Press, Amsterdam (2002)

    Google Scholar 

  28. Turchette, Q.A., Kielpinski, D., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  29. Deslauriers, L., Olmschenk, S., Stick, D., Hensinger, W.K., Sterk, J., Monroe, C.: Scaling and suppression of anomalous quantum decoherence in ion traps. Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  30. Rowe, M.A., Ben-Kish, A., DeMarco, B., Leibfried, D., Meyer, V., Beall, J., Britton, J., Hughes, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Transport of quantum states and separation of ions in a dual RF ion trap. Quant. Inform. Comp. 2, 257–271 (2002)

    Google Scholar 

  31. Madsen, M.J., Hensinger, W.K., Stick, D., Rabchuk, J.A., Monroe, C.: Planar ion trap geometry for microfabrication. Appl. Phys. B 78, 639–651 (2004)

    Article  ADS  Google Scholar 

  32. Stick, D., Hensinger, W.K., Olmschenk, S., Madsen, M.J., Schwab, K., Monroe, C.: Ion trap in a semiconductor chip. Nat. Phys. 2, 36–39 (2006)

    Article  Google Scholar 

  33. Deslauriers, L., Haljan, P.C., Lee, P.J., Brickman, K.A., Blinov, B.B., Madsen, M.J., Monroe, C.: Zero-point cooling and low heating of trapped 111Cd+ ions. Phys. Rev. A 70, 043408 (2004)

    Article  ADS  Google Scholar 

  34. Home, J.P., Steane, A.M.: Electrode configurations for fast separation of trapped ions. Quant. Inform. Comp. 6, 289–325 (2006)

    Google Scholar 

  35. Hensinger, W.K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Monroe, C.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006)

    Article  ADS  Google Scholar 

  36. Chiaverini, J., Blakestad, R.B., Britton, J., Jost, J.D., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Surface-electrode architectre for ion-trap quantum informaion processing. Quant. Inform. Comp. 5, 419–439 (2005)

    MathSciNet  Google Scholar 

  37. Kim, J., Pau, S., Ma, Z., McLellan, H.R., Gates, J.V., Kornblit, A., Slusher, R.E., Jopson, R.M., Kang, I., Dinu, M.: System design for large-scale ion trap quantum information processor. Quant. Inform. Comp. 5, 515–537 (2005)

    Google Scholar 

  38. Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J.J., Leibfried, D., Britton, J., Wesenberg, J.H., Blakestad, R.B., Epstein, R.J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Shiga, N., Wineland, D.J.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  Google Scholar 

  39. Britton, J., Leibfried, D., Beall, J., Blakestad, R.B., Bollinger, J.J., Chiaverini, J., Epstein, R.J., Jost, J.D., Kielpinski, D., Langer, C., Ozeri, R., Reichle, R., Seidelin, S., Shiga, N., Wesenberg, J.H., Wineland, D.J.: A microfabricated surface-electrode ion trap in silicon. Passive cooling of a micromechanical oscillator with a resonant electric circuit. arXiv:0705.1197v1 (2006)

  40. Brown, K.R., Clark, R.J., Labaziewicz, J., Richerme, P., Leibrandt, D.R., Chuang, I.L.: arXiv:quant-ph/0605170v1 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leibfried.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibfried, D., Wineland, D.J., Blakestad, R.B. et al. Towards scaling up trapped ion quantum information processing. Hyperfine Interact 174, 1–7 (2007). https://doi.org/10.1007/s10751-007-9571-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-007-9571-y

Keywords

Navigation