Skip to main content
Log in

Variable shrimp in variable environments: reproductive investment within Palaemon varians

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The maternal environment may influence the quantity and quality of resources invested in offspring (per-offspring provisioning) and this trait, in turn, affects larval fitness and may carry-over into early juvenile life. Here, per-offspring investment was measured across three consecutive breeding seasons for the caridean shrimp, Palaemon varians. Egg and hatchling larval dry weight as well as hatchling larval biochemical composition were measured. Results indicate that egg volume is positively correlated with dry weight, but egg volume as a proxy for dry weight should be used with caution. Correlations were identified between per-offspring investment and average breeding season temperature, but the period over which temperature was averaged was important to whether these correlations were positive or negative, highlighting the complexity of identifying environmental influence on phenotypic traits. The most important factor determining offspring size and per-offspring investment was maternal size, which may be influenced by the environment as carapace length varied significantly between breeding seasons. These data demonstrate variation in egg and larval composition, related to maternal size, which will affect early life traits and survivorship for P. varians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alon, N. C. & S. E. Stancyk, 1982. Variation in life-history patterns of the grass shrimp Palaemonetes pugio in two South Carolina estuarine systems. Marine Biology 68: 265–276.

    Google Scholar 

  • Anger, K., 2001. The Biology of Decapod Crustacean Larvae. A.A. Balkema Publishers, Tokyo.

    Google Scholar 

  • Bas, C. C., E. D. Spivak & K. Anger, 2007. Seasonal and interpopulational variability in fecundity, egg size, and elemental composition (CHN) of eggs and larvae in a grapsoid crab, Chasmagnathus granulatus. Helgoland Marine Research 61: 225–237.

    Google Scholar 

  • Bayne, B. L., D. L. Holland, M. N. Moore, D. M. Lowe & J. Widdows, 1978. Further studies on the effects of stress in the adult on the eggs of Mytilus edulis. Journal of the Marine Biological Association of the UK 58: 825–841.

    Google Scholar 

  • Boddeke, R., 1982. The occurrence of “winter” and “summer” eggs in the brown shrimp (Crangon crangon) and the impact on recruitment. Netherlands Journal of Sea Research 16: 151–162.

    Google Scholar 

  • Brown, A., S. Thatje & C. Hauton, 2017. The effects of temperature and hydrostatic pressure on metal toxicity: Insights into toxicity in the deep sea. Environmental Science & Technology 51(17): 10222–10231. https://doi.org/10.1021/acs.est.7b02988.

    Article  CAS  Google Scholar 

  • Chester, C. M., 1996. The effect of adult nutrition on reproduction and development of the estuarine nudibranch, Tenellia adspersa (Nordmann, 1845). Journal of Experimental Marine Biology and Ecology 198: 113–130.

    Google Scholar 

  • Clarke, A., 1993. Egg size and egg composition in polar shrimps (Caridea: Decapoda). Journal of Experimental Marine Biology and Ecology 168: 189–203.

    Google Scholar 

  • De Graves, S. & C. W. Ashelby, 2013. A re-appraisal of the systematic status of selected genera in Palaemoninae (Crustacea: Decapoda: Palaemonidae). Zootaxa 3734: 331–344.

    Google Scholar 

  • Fincham, A. A., 1977. Larval development of British prawns and shrimps (Crustacea: Decapoda: Natantia). 1. Laboratory methods and a review of Palaemon (Paleander) elegans Rathke 1837. Bulletin of the British Museum (Natural History) 31: 1–28.

    Google Scholar 

  • Fincham, A. A., 1979. Larval development of British prawns and shrimps (Crustacea: Decapoda: Natantia). 2. Palaemonetes (Palaemonetes) varians (Leach, 1814) and morphological variation. Bulletin of the British Museum (Natural History). Zoology Series 35: 163–182.

    Google Scholar 

  • Fincham, A. A., 1983. Larval development of British prawns and shrimps (Crustacea: Decapoda: Natantia). 4. Palaemon (Palaemon) serratus (Pennant, 1777) and functional morphology of swimming. Bulletin of the British Museum (Natural History). Zoology Series 44: 125–161.

    Google Scholar 

  • Fischer, K., A. N. M. Bot, P. M. Brakefield & B. Zwaan, 2003a. Fitness consequences of temperature-mediated egg size plasticity in a butterfly. Functional Ecology 17: 803810.

    Google Scholar 

  • Fischer, K., P. M. Brakefield & B. J. Zwaan, 2003b. Plasticity in butterfly egg size: why larger offspring at lower temperatures? Ecology 84: 3138–3147.

    Google Scholar 

  • Fischer, K., E. Eenhoorn, A. N. M. Bot, P. M. Brakefield & B. Zwaan, 2003c. Cooler butterflies lay larger eggs: devlopmental plasticity versus acclimation. Proceedings of the Royal Society B 270: 2051–2056.

    PubMed  Google Scholar 

  • Fischer, S., S. Thatje & T. Brey, 2009. Early egg traits in Cancer setosus (Decapoda, Brachyura): effects of temperature and female size. Marine Ecology Progress Series 377: 193–202.

    CAS  Google Scholar 

  • Fox, C. W. & M. E. Czesak, 2000. Evolutionary ecology of progeny size in arthropods. Annual Review of Entomology 45: 341–369.

    CAS  PubMed  Google Scholar 

  • Geister, T. L., M. W. Lorenz, K. H. Hoffmann & K. Fischer, 2009. Energetics of embryonic development: effects of temperature on egg and hatchling composition in a butterfly. Journal of Comparative Physiology B 179: 87–98.

    Google Scholar 

  • George, S. B., 1990. Population and seasonal differences in egg quality of Arbacia lixula (Echinodermate: Echinoidea). Invertebrate Reproduction & Development 17: 111–121.

    Google Scholar 

  • George, S. B., 1996. Echinoderm egg and larval quality as a function of adult nutritional state. Oceanologica Acta 19: 297–308.

    Google Scholar 

  • George, S. B., C. Cellario & L. Fenaux, 1990. Population differences in egg quality of Arbacia lixula (Echinodermata: Echinoidea): proximate composition of eggs and larval development. Journal of Experimental Marine Biology and Ecology 141: 107–118.

    Google Scholar 

  • Giménez, L., 2006. Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integrative and Comparative Biology 46: 615–622.

    PubMed  Google Scholar 

  • Giménez, L., K. Anger & G. Torres, 2004. Linking life history traits in successive phases of a complex life cycle: effects of larval biomass on early juvenile development in an estuarine crab, Chasmagnathus granulata. Oikos 104: 570–580.

    Google Scholar 

  • Giménez, L. & G. Torres, 2002. Larval growth in the estuarine crab Chasmagnathus granulata: the importance of salinity experience during embryonic development, and the initial larval biomass. Marine Biology 141: 877–885.

    Google Scholar 

  • González-Ortegón, E. & L. Giménez, 2014. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Marine Ecology Progress Series 502: 185–195.

    Google Scholar 

  • González-Ortegón, E., L. L. Vay, M. E. M. Walton & L. Giménez, 2018. Maternal trophic status and offpsring phenotype in a marine invertebrate. Scientific Reports 8: 9618.

    PubMed  PubMed Central  Google Scholar 

  • Hindley, J., 2001. The Ecology and Dynamics of the Brackish Water Prawn, Palaemonetes varians (Leach) and Its Interrelationship with the Common Goby, Pomatoschistus microps (Krøyer) in Artificial Coastal Lagoons of the Ribble Estuary. Doctor of Philosophy, University of Lancaster, Edge Hill, Lancashire.

    Google Scholar 

  • Jaeckle, W. B., 1995. Variation in the size, energy content, and biochemical composition of invertebrate eggs: correlates to the mode of larval development. In McEdward, L. R. (ed.), Ecology of Marine Invertebrate Larvae. CRC Press Boca, London.

    Google Scholar 

  • Kattner, G., I. S. Wehrtmann & T. Merck, 1994. Interannual variations of lipids and fatty acids during larval development of Crangon spp. in the German Bight, North Sea. Comparative Biochemistry and Physiology-Part B 107: 103–110.

    Google Scholar 

  • Kerfoot, W. C., 1974. Egg-size cycle of a cladoceran. Ecology 55: 1259–1270.

    Google Scholar 

  • Lardies, M. A. & J. C. Castilla, 2001. Latitudinal variation in the reproductive biology of the commensal crab Pinnaxodes chilensis (Decapoda: Pinnotheridae) along the Chilean coast. Marine Biology 139: 1125–1133.

    Google Scholar 

  • Lardies, M. A. & I. S. Wehrtmann, 2001. Latitudinal variation in the reproductive biology of Betaeus truncatus (Decapoda: Alpheidae) along the Chilean coast. Ophelia 55: 5567.

    Google Scholar 

  • Liefting, M., M. Weerenbeck, C. van Dooremalen & J. Ellers, 2010. Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod. Functional Ecology 24: 1291–1298.

    Google Scholar 

  • Linck B (1995) Einfluß von Temperatur und Salzgehalt auf die Larven der Nordseegarnele Crangon crangon. University of Oldenburg, Germany, MSc thesis

  • Marshall, D. & M. J. Keough, 2007. The evolutionary ecology of offspring size in marine invertebrates. Advances in Marine Biology 53: 1–60.

    PubMed  Google Scholar 

  • McEdward, L. R. & F.-S. Chai, 1991. Size and energy content of eggs from echinoderms with pelagic lecithotrophic development. Journal of Experimental Marine Biology and Ecology 147: 95–102.

    Google Scholar 

  • McEdward, L. R. & K. H. Morgan, 2001. Interspecific relationships between egg size and the level of parental investment per offspring in echinoderms. Biological Bulletin 200: 33–50.

    CAS  Google Scholar 

  • Moran, A. L. & J. S. McAlister, 2009. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be? Biological Bulletin 216: 226–242.

    Google Scholar 

  • Moran, A. L., J. S. McAlister & E. A. G. Whitehill, 2013. Eggs as energy: revisiting the scaling of egg size and energetic content among echinoderms. Biological Bulletin 224: 184191.

    Google Scholar 

  • Morris, J. P., S. Thatje, D. Cottin, A. Oliphant, A. Brown, B. Shillito, J. Ravaux & C. Hauton, 2015. The potential for climate-driven bathymetric range shift: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians. Royal Society Open Science 2: 150472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, Y., D. Ammar & E. Nazari, 2004. Embryonic development of four species of palaemonid prawns (Crustacea, Decapoda): pre-naupliar, naupliar and post-naupliar periods. Revista Brasileira de Zoologia 21: 27–32.

    Google Scholar 

  • Oh, C. W. & R. G. Hartnoll, 2004. Reproductive biology of the common shrimp Crangon crangon (Decapoda: Crangonidae) in the central Irish Sea. Marine Biology 144: 303–316.

    Google Scholar 

  • Oliphant, A., S. Thatje, A. Brown, M. Morini, J. Ravaux & B. Shillito, 2011. Pressure tolerance of the shallow-water caridean shrimp Palaemonetes varians across its thermal tolerance window. Journal of Experimental Biology 214: 1109–1117.

    Google Scholar 

  • Oliphant, A., C. Hauton & S. Thatje, 2013. The implications of temperature-mediated plasticity in larval instar number for development within a marine invertebrate, the shrimp Palaemonetes varians. PLoS ONE 8(9): e75785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliphant, A. & S. Thatje, 2013. Per offspring investment implications for crustacean larval development: evolutionary insights into endotrophy and abbreviated development. Marine Ecology Progress Series 493: 207–217.

    Google Scholar 

  • Oliphant, A. & S. Thatje, 2014. Energetic adaptations to larval export within the brackish living palaemonine shrimp Palaemonetes varians. Marine Ecology Progress Series 505: 177–191.

    Google Scholar 

  • Oliphant, A., M. C. Ichino & S. Thatje, 2014. The influence of per offspring investment (POI) and starvation on larval developmental plasticity within the palaemonid shrimp, Palaemonetes varians. Marine Biology 161: 2069–2077.

    CAS  Google Scholar 

  • Parker, G. A. & M. Begon, 1986. Optimal egg size and clutch size–effects of environment and maternal phenotype. American Naturalist 128: 573–592.

    Google Scholar 

  • Pettersen, A. K., C. R. White & D. J. Marshall, 2015. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory. Proceeding of the Royal Society B 282: 20151946.

    Google Scholar 

  • Perrin, N., 1988. Why are offspring born larger when it is colder? Phenotypic plasticity for offspring size in the cladoceran Simocephalus vetulus (Muller). Functional Ecology 2: 283–288.

    Google Scholar 

  • Peruzza, L., M. Gerdol, A. Oliphant, D. C. Wilcockson, A. Pallavicini, L. Hawkins, S. Thatje & C. Hauton, 2018. The consequences of daily hypoxia on a European grass shrimp: from short-term responses to long-term effects. Functional Ecology 32: 2333–2344.

    Google Scholar 

  • Pochelon, P. N., T. L. da Silva, A. Reis, A. Dos Santos, H. Queiroga & R. Calado, 2011. Interindividual and within-brood variability in the fatty acid profiles of Norway lobster, Nephrops norvegicus (L.) embryos. Marine Biology 158: 2825–2833.

    CAS  Google Scholar 

  • Qian, P. Y. & F. S. Chia, 1991. Fecundity and egg size are mediated by food quality in the polychaete worm Capitella sp. Journal of Experimental Marine Biology and Ecology 148: 11–25.

    Google Scholar 

  • Qian, P. Y., 1994. Effect of food quantity on growth and reproductive characteristics of Capitella sp. (Annelida: Polychaete). Invertebrate Reproduction and Development 26: 175–185.

    Google Scholar 

  • Sakai, S., Harada, Y., 2001. Why do large mothers produce large offspring? Theory and a test. The American Naturalist 157(3): 348–359.

    CAS  PubMed  Google Scholar 

  • Sampedro, M. P., L. Fernández, J. Freire & E. González-Gurriarán, 1997. Fecundity and reproductive output of Pisidia longicornis (Decapoda, Anomura) in the Ría de Arousa (Galicia, NW Spain). Crustaceana 70: 95–110.

    Google Scholar 

  • Sheader, M., 1983. The reproductive biology and ecology of Gammarus duebeni (Crustacea: Amphipoda) in southern England. Journal of the Marine Biological Association of the UK 63: 517–540.

    Google Scholar 

  • Skadsheim, A., 1989. Regional variation in amphipod life history: effects of temperature and salinity on breeding. Journal of Experimental Marine Biology and Ecology 127(1): 25–42.

    Google Scholar 

  • Smith, K. E. & S. Thatje, 2013. The subtle intracapsular survival of the fittest: maternal investment, sibling conflict, or environmental effects? Ecology 94: 2263–2274.

    PubMed  Google Scholar 

  • Strathmann, R. R. & K. Vedder, 1977. Size and organic content of eggs of echinoderms and other invertebrates as related to developmental strategies and egg eating. Marine Biology 39: 305–309.

    Google Scholar 

  • Urzúa, Á. & K. Anger, 2013. Seasonal variations in larval biomass and biochemical composition of brown shrimp, Crangon crangon (Decapoda, Caridea), at hatching. Helgoland Marine Research 67: 267–277.

    Google Scholar 

  • Urzúa, Á., K. Paschke, P. Gebauer & K. Anger, 2012. Seasonal and interannual variations in size, biomass and chemical composition of the eggs of the North Sea shrimp, Crangon crangon (Decapoda: Caridea). Marine Biology 159: 583–599.

    Google Scholar 

  • Vázquez, M., C. C. Bas & E. D. Spivak, 2012. Life history traits of the invasive estuarine shrimp Palaemon macrodactylus (Caridea: Palaemonidae) in a marine environment (Mar del Plata, Argentina). Scientia Marina 76: 507–516.

    Google Scholar 

  • Wehrtmann, I. S. & G. A. Lopez, 2003. Effects of temperature on the embryonic development and hatchling size of Betaeus emarginatus (Decapoda: Caridea: Alpheidae). Journal of Natural History 37: 2165–2178.

    Google Scholar 

Download references

Acknowledgements

Andrew Oliphant was supported by a PhD studentship from the University of Southampton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Oliphant.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling editor: Jonne Kotta

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliphant, A., Thatje, S. Variable shrimp in variable environments: reproductive investment within Palaemon varians. Hydrobiologia 848, 469–484 (2021). https://doi.org/10.1007/s10750-020-04455-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04455-z

Keywords

Navigation