Skip to main content

Advertisement

Log in

Temporally variable niche overlap and competitive potential of an introduced and a native mysid shrimp

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Temporal patterns of interspecific interactions and their correspondence with life history events are of key significance for community dynamics, but often overlooked in characterising the mechanisms of species invasions and predicting competitive outcomes. Here, we examine the role of seasonality in moderating interactions between a globally important invasive mysid shrimp (Hemimysis anomala) and an ecologically similar native species (Mysis salemaai) by combining distribution and diet surveys with experimental quantification of comparative resource exploitation rates and mutual aggressive interactions. We found partial overlap in winter, but not summer horizontal distributions of the two species. Diets were highly similar in the seasonally overlapping range, potentially resulting in competition for the high-quality, but seasonally scarce, zooplankton prey in invaded lakes. Despite its smaller size, H. anomala had similar feeding rates to M. salemaai on three key zooplankton prey species. H. anomala was more aggressive toward M. salemaai than M. salemaai was toward H. anomala, although there was no evidence for intraguild predation. Our findings indicate that spatio-temporal niche partitioning permitted invasion by H. anomala and coexistence with M. salemaai, in spite of their high trophic similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrios-O’Neill, D., J. T. A. Dick, M. C. Emmerson, A. Ricciardi, H. J. MacIsaac, M. E. Alexander & H. C. Bovy, 2014b. Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator. Journal of Animal Ecology 83: 693–701.

    Article  PubMed  Google Scholar 

  • Barrios-O’Neill, D., J. T. A. Dick, A. Ricciardi, H. J. MacIsaac & M. C. Emmerson, 2014a. Deep impact: in situ functional responses reveal context-dependent interactions between vertically migrating invasive and native mesopredators and shared prey. Freshwater Biology 59: 2194–2203.

    Article  Google Scholar 

  • Bates, D., M. Mächler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • Berlow, E. L., 1999. Strong effects of weak interactions in ecological communities. Nature 398: 330–334.

    Article  CAS  Google Scholar 

  • Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Järvinen, C. N. Aonghusa, T. Nõges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.

    Article  Google Scholar 

  • Burlakova, L. E., A. Y. Karatayev & D. K. Padilla, 2000. The impact of Dreissena polymorpha (Pallas) invasion on unionid bivalves. International Review of Hydrobiology 85: 529–541.

    Article  Google Scholar 

  • CaraDonna, P. J., W. K. Petry, R. M. Brennan, J. L. Cunningham, J. L. Bronstein, N. M. Waser & N. J. Sanders, 2017. Interaction rewiring and the rapid turnover of plant-pollinator networks. Ecology Letters 20: 385–394.

    Article  PubMed  Google Scholar 

  • Caroni, R. & K. Irvine, 2010. The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biology and Environment: Proceedings of the Royal Irish Academy 110B: 35–53.

    Google Scholar 

  • Chapple, D. G., S. M. Simmonds & B. B. M. Wong, 2012. Can behavioral and personality traits influence the success of unintentional species introductions? Trends in Ecology and Evolution 27: 57–64.

    Article  PubMed  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K. & R. Gorley, 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Cuddington, K. & A. Hastings, 2016. Autocorrelated environmental variation and the establishment of invasive species. Oikos 125: 1027–1034.

    Article  Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.

    Article  Google Scholar 

  • Dick, J. T. A., K. Gallagher, S. Avlijas, H. C. Clarke, S. E. Lewis, S. Leung, D. Minchin, J. Caffrey, M. E. Alexander, C. Maguire, C. Harrod, N. Reid, N. R. Haddaway, K. D. Farnsworth, M. Penk & A. Ricciardi, 2013. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biological Invasions 15: 837–846.

    Article  Google Scholar 

  • Dingle, H., 2014. Migration: The Biology of Life on the Move. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Donohue, I., H. Hillebrand, J. M. Montoya, O. L. Petchey, S. L. Pimm, M. S. Fowler, K. Healy, A. L. Jackson, M. Lurgi, D. McClean, N. E. O’Connor, E. J. O’Gorman & Q. Yang, 2016. Navigating the complexity of ecological stability. Ecology Letters 19: 1072–1085.

    Article  Google Scholar 

  • Donohue, I., O. Petchey, S. Kéfi, A. Génin, A. Jackson, Q. Yang & N. E. O’Connor, 2017. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Global Change Biology 23: 2962–2972.

    Article  PubMed  Google Scholar 

  • Downing, A. S., E. H. van Nes, J. H. Janse, F. Witte, I. J. M. Cornelissen, M. Scheffer & W. M. Mooij, 2012. Collapse and reorganization of a food web of Mwanza Gulf, Lake Victoria. Ecological Applications 22: 229–239.

    Article  PubMed  Google Scholar 

  • Eccard, J. A., K. Fey, B. A. Caspers & H. Ylonen, 2011. Breeding state and season affect interspecific interaction types: indirect resource competition and direct interference. Oecologia 167: 623–633.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher, K., R. Rosell, L. Vaughan, Y. R. McElarney, W. Campbell, E. O’Kane & C. Harrod, 2015. Hemimysis anomala G.O. Sars, 1907 expands its invasive range to Northern Ireland. BioInvasions Records 4: 43–46.

    Article  Google Scholar 

  • Gallardo, B., M. Clavero, M. I. Sánchez & M. Vilà, 2016. Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology 22: 151–163.

    Article  PubMed  Google Scholar 

  • García Molinos, J. & I. Donohue, 2011. Temporal variability within disturbance events regulates their effects on natural communities. Oecologia 166: 795–806.

    Article  PubMed  Google Scholar 

  • García Molinos, J., M. Viana, M. Brennan & I. Donohue, 2015. Importance of Long-Term Cycles for Predicting Water Level Dynamics in Natural Lakes. PLOS ONE 10: e0119253.

  • Gaston, K., J. Duffy, S. Gaston, J. Bennie & T. Davies, 2014. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176: 917–931.

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Moreno, P., J. M. Diez, I. Ibáñez, X. Font & M. Vilà, 2014. Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Diversity and Distributions 20: 720–731.

    Article  Google Scholar 

  • Griffiths, D., K. A. Macintosh, E. Forasacco, B. Rippey, L. Vaughan, Y. R. McElarney & K. Gallagher, 2015. Mysis salemaai in Ireland: new occurrences and existing population declines. Biology and Environment: Proceedings of the Royal Irish Academy 115B: 1–7.

    Google Scholar 

  • Grosholz, E. D., 2005. Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proceedings of the National Academy of Sciences of the United States of America 102: 1088–1091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hansson, L. A. & S. Åkesson, 2014. Animal Movement Across Scales. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Hayes, K. & S. Barry, 2008. Are there any consistent predictors of invasion success? Biological Invasions 10: 483–506.

    Article  Google Scholar 

  • Human, K. G. & D. M. Gordon, 1996. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105: 405–412.

    Article  PubMed  Google Scholar 

  • Iacarella, J. C., J. T. A. Dick & A. Ricciardi, 2015a. A spatio-temporal contrast of the predatory impact of an invasive freshwater crustacean. Diversity and Distributions 21: 803–812.

    Article  Google Scholar 

  • Iacarella, J. C., J. T. A. Dick, M. E. Alexander & A. Ricciardi, 2015b. Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching. Ecological Applications 25: 706–716.

    Article  PubMed  Google Scholar 

  • Jackson, M. C. & J. Grey, 2013. Accelerating rates of freshwater invasions in the catchment of the River Thames. Biological Invasions 15: 945–951.

    Article  Google Scholar 

  • Jackson, M. C., I. Donohue, A. L. Jackson, J. R. Britton, D. M. Harper & J. Grey, 2012. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE 7: e31757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson, M. C., J. Grey, K. Miller, J. R. Britton & I. Donohue, 2016. Dietary niche constriction when invaders meet natives: evidence from freshwater decapods. Journal of Animal Ecology 85: 1098–1107.

    Article  PubMed  Google Scholar 

  • Kumschick, S., M. Gaertner, M. Vilà, F. Essl, J. M. Jeschke, P. Pyšek, A. Ricciardi, S. Bacher, T. M. Blackburn, J. T. A. Dick, T. Evans, P. E. Hulme, I. Kühn, A. Mrugała, J. Pergl, W. Rabitsch, D. M. Richardson, A. Sendek & M. Winter, 2015. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience 65: 55–63.

    Article  Google Scholar 

  • Kumschick, S. & D. M. Richardson, 2013. Species-based risk assessments for biological invasions: advances and challenges. Diversity and Distributions 19: 1095–1105.

    Article  Google Scholar 

  • Kuznetsova, A., P. Brockhoff & R. Christensen, 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 67: 1–48.

    Google Scholar 

  • Larsen, L. O. & S. Dufour, 1993. Growth, reproduction and death in lampreys and eels. In Rankin, J. C. & F. B. Jensen (eds), Fish Ecophysiology. Springer, Dordrecht: 72–104.

    Chapter  Google Scholar 

  • Li, W. & M. H. H. Stevens, 2012. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121: 435–441.

    Article  Google Scholar 

  • Lopez, D. P., A. A. Jungman & J. S. Rehage, 2012. Nonnative African jewelfish are more fit but not bolder at the invasion front: a trait comparison across an Everglades range expansion. Biological Invasions 14: 2159–2174.

    Article  Google Scholar 

  • McKeon, C. S., M. X. Weber, S. E. Alter, N. E. Seavy, E. D. Crandall, D. J. Barshis, E. D. Fechter-Leggett & K. L. L. Oleson, 2016. Melting barriers to faunal exchange across ocean basins. Global Change Biology 22: 465–473.

    Article  PubMed  Google Scholar 

  • McMeans, B. C., K. S. McCann, M. Humphries, N. Rooney & A. T. Fisk, 2015. Food web structure in temporally-forced ecosystems. Trends in Ecology & Evolution 30: 662–672.

    Article  Google Scholar 

  • Minchin, D. & R. Boelens, 2010. Hemimysis anomala is established in the Shannon River Basin District in Ireland. Aquatic Invasions 5: S71–S78.

    Article  Google Scholar 

  • Monceau, K., J. Moreau, J. Poidatz, O. Bonnard & D. Thiéry, 2015. Behavioral syndrome in a native and an invasive hymenoptera species. Insect Science 22: 541–548.

    Article  PubMed  Google Scholar 

  • Morgan, M. D. & S. T. Threlkeld, 1982. Size dependent horizontal migration of Mysis relicta. Hydrobiologia 93: 63–68.

    Article  Google Scholar 

  • Mrowicki, R. J., N. E. O’Connor & I. Donohue, 2016. Temporal variability of a single population can determine the vulnerability of communities to perturbations. Journal of Ecology 104: 887–897.

    Article  Google Scholar 

  • Muller, A. C. & D. L. Muller, 2015. Forecasting future estuarine hypoxia using a wavelet based neural network model. Ocean Modelling 96: 314–323.

    Article  Google Scholar 

  • Norton, W. H. J., K. Stumpenhorst, T. Faus-Kessler, A. Folchert, N. Rohner, M. P. Harris, J. Callebert & L. Bally-Cuif, 2011. Modulation of Fgfr1a signaling in zebrafish reveals a genetic basis for the aggression-boldness syndrome. The Journal of Neuroscience 31: 13796–13807.

    Article  PubMed  CAS  Google Scholar 

  • Olden, J. D., N. L. Poff, M. R. Douglas, M. E. Douglas & K. D. Fausch, 2004. Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 18–24.

    Article  PubMed  Google Scholar 

  • O’Connor, N. E., M. E. S. Bracken, T. P. Crowe & I. Donohue, 2015. Nutrient enrichment alters the consequences of species loss. Journal of Ecology 103: 862–870.

    Article  Google Scholar 

  • O’Connor, N. E., M. Emmerson, T. Crowe & I. Donohue, 2013. Distinguishing between direct and indirect effects of predators in complex ecosystems. Journal of Animal Ecology 82: 438–448.

    Article  PubMed  Google Scholar 

  • Penk, M. R. & D. Minchin, 2014. Seasonal migration of a glacial relict mysid into the littoral zone and its co-occurrence with an introduced competitor. Hydrobiologia 726: 1–11.

    Article  CAS  Google Scholar 

  • Penk, M., K. Irvine & I. Donohue, 2015. Ecosystem-level effects of a globally spreading invertebrate invader are not moderated by a functionally similar native. Journal of Animal Ecology 84: 1628–1636.

    Article  PubMed  Google Scholar 

  • Penk, M. R., J. M. Jeschke, D. Minchin & I. Donohue, 2016a. Warming can enhance invasion success through asymmetries in energetic performance. Journal of Animal Ecology 85: 419–426.

    Article  PubMed  Google Scholar 

  • Penk, M., I. Donohue, D. Minchin & K. Irvine, 2016b. Life history timing, but not body size, of Mysis salemaai (Crustacea: Mysida) conserved across a trophic gradient at its southern distribution. Hydrobiologia 775: 83–95.

    Article  CAS  Google Scholar 

  • Penk, M., W.-C. Saul, J. T. A. Dick, I. Donohue, M. E. Alexander, S. Linzmaier & J. M. Jeschke, 2017. A trophic interaction framework for identifying the invasive capacity of novel organisms. Methods in Ecology and Evolution 8: 1786–1794.

    Article  Google Scholar 

  • Petchey, O. L., U. Brose & B. C. Rall, 2010. Predicting the effects of temperature on food web connectance. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2081–2091.

    Article  Google Scholar 

  • Pintor, L. M., A. Sih & M. L. Bauer, 2008. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117: 1629–1636.

    Article  Google Scholar 

  • R Core Team, 2016. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. http://www.R-project.org.

  • Reynolds, J. B. & G. M. DeGraeve, 1972. Seasonal population characteristics of the opossum shrimp, Mysis relicta, in southeastern Lake Michigan, 1970–71. Proceedings of the 15th Conference on Great Lakes Research: 117–131.

  • Ricciardi, A., S. Avlijas & J. Marty, 2012. Forecasting the ecological impacts of the Hemimysis anomala invasion in North America: lessons from other freshwater mysid introductions. Journal of Great Lake Research 38: 7–13.

    Article  Google Scholar 

  • van Riel, M. C., G. van der Velde & A. B. de Vaate, 2009. Interference competition between alien invasive gammaridean species. Biological Invasions 11: 2119–2132.

    Article  Google Scholar 

  • Samhouri, J. F., R. R. Vance, G. E. Forrester & M. A. Steele, 2009. Musical chairs mortality functions: density-dependent deaths caused by competition for unguarded refuges. Oecologia 160: 257–265.

    Article  PubMed  Google Scholar 

  • Sih, A., A. Bell & J. C. Johnson, 2004a. Behavioral syndromes: an ecological and evolutionary overview. Trends in Ecology and Evolution 19: 372–378.

    Article  PubMed  Google Scholar 

  • Sih, A., A. M. Bell, J. C. Johnson & R. E. Ziemba, 2004b. Behavioral syndromes: an integrative overview. Quarterly Review of Biology 79: 241–277.

    Article  PubMed  Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology Evolution and Systematics 40: 81–102.

    Article  Google Scholar 

  • Simberloff, D., 2011. How common are invasion-induced ecosystem impacts? Biological Invasions 13: 1255–1268.

    Article  Google Scholar 

  • Simberloff, D., J.-L. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. García-Berthou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi & M. Vilà, 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution 28: 58–66.

    Article  PubMed  Google Scholar 

  • Strayer, D. L., C. M. D’Antonio, F. Essl, M. S. Fowler, J. Geist, S. Hilt, I. Jarić, K. Jöhnk, C. G. Jones, X. Lambin, A. W. Latzka, J. Pergl, P. Pyšek, P. Robertson, M. Schmalensee, R. A. Stefansson, J. Wright & J. M. Jeschke, 2017. Boom-bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters 20: 1337–1350.

    Article  PubMed  Google Scholar 

  • Strayer, D. L. & H. M. Malcom, 2007. Effects of zebra mussels (Dreissena polymorpha) on native bivalves: the beginning of the end or the end of the beginning? Journal of the North American Benthological Society 26: 111–122.

    Article  Google Scholar 

  • Suraci, J. P., M. Clinchy, L. M. Dill, D. Roberts & L. Y. Zanette, 2016. Fear of large carnivores causes a trophic cascade. Nature Communications 7: 7.

    Article  CAS  Google Scholar 

  • Terborgh, J. & J. A. Estes, 2010. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature. Island Press, Washington.

    Google Scholar 

  • Therneau, T., 2015. A package for survival analysis in S. version 2.38. https://CRAN.R-project.org/package=survival.

  • Urban, M. C., 2007. Predator size and phenology shape prey survival in temporary ponds. Oecologia 154: 571–580.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., C. M. Dantonio, L. L. Loope & R. Westbrooks, 1996. Biological invasions as global environmental change. American Scientist 84: 468–478.

    Google Scholar 

  • Väinölä, R. & J. K. Vainio, 1998. Distributions, life cycles and hybridization of two Mysis relicta group species (Crustacea: Mysida) in the northern Baltic Sea and Lake Baven. Hydrobiologia 368: 137–148.

    Article  Google Scholar 

  • Walton, Z., J. Mattisson, J. D. C. Linnell, A. Stien & J. Odden, 2017. The cost of migratory prey: seasonal changes in semi-domestic reindeer distribution influences breeding success of Eurasian lynx in northern Norway. Oikos 126: 642–650.

    Article  Google Scholar 

  • Werner, E. E. & D. J. Hall, 1977. Competition and habitat shift in two sunfishes (Centrarchidae). Ecology 58: 869–876.

    Article  Google Scholar 

  • Winder, M. & J. E. Cloern, 2010. The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3215–3226.

    Article  Google Scholar 

  • Wollrab, S., A. M. de Roos & S. Diehl, 2013. Ontogenetic diet shifts promote predator-mediated coexistence. Ecology 94: 2886–2897.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Magda Gluza and Tomek Piątek for help in the field. This work was supported by the Irish Research Council in partnership with Ecological Consultancy Services Limited (ECS/2009/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin R. Penk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Gideon Gal

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penk, M.R., Donohue, I. & Irvine, K. Temporally variable niche overlap and competitive potential of an introduced and a native mysid shrimp. Hydrobiologia 823, 109–119 (2018). https://doi.org/10.1007/s10750-018-3700-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3700-2

Keywords

Navigation