Skip to main content
Log in

Fragment type and water nutrient interact and affect the survival and establishment of Myriophyllum aquaticum

  • INVASIVE SPECIES II
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Myriophyllum aquaticum is a semi-submerged exotic macrophyte that was introduced to China for many years. This species may be found in an emergent form in aquatic environments or in an amphibious form under drained conditions. Nuisance growth of this species has often been attributed to excessive amounts of nutrients. Therefore, we tested the following hypotheses: (1) high nutrient availability facilitates the establishment of M. aquaticum and (2) fragment type interacts with nutrient availability to determine the colonization and regeneration capacities of M. aquaticum. Two types of fragments were grown in water solutions with two levels of phosphorous. After 3 weeks, the survival rates showed no significant difference between the phosphorous treatments. However, emergent fragments showed higher RGR in the low and high phosphorous treatments than amphibious fragments. In addition, emergent fragments also showed higher regeneration capacities, indicating higher invasiveness in emergent fragments compared to amphibious fragments. Moreover, the high phosphorous concentration caused emergent fragments to produce more branches, indicating that nutrient availability may increase M. aquaticum propagule pressure. Our study highlights that nutrient supply increased emergent fragment establishment and shaped the invasion dynamics of macrophytes, which could help predict the spread and potential impact of exotic macrophytes in natural aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barrat-Segretain, M. H. & G. Bornette, 2000. Regeneration and colonization abilities of aquatic plant fragments: effect of disturbance seasonality. Hydrobiologia 421(1): 31–39.

    Article  Google Scholar 

  • Barrat-Segretain, M. H., G. Bornette & A. Hering-Vilas-Bôas, 1998. Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquatic Botany 60: 201–211.

    Article  Google Scholar 

  • Barrat-Segretain, M. H., C. P. Henry & G. Bornette, 1999. Regeneration and colonization of aquatic plants fragments in relation to the disturbance frequency of their habitat. Archiv für Hydrobiologie 145: 111–127.

    Article  Google Scholar 

  • Bickel, T. O., 2016. Processes and factors that affect regeneration and establishment of the invasive aquatic plant Cabomba caroliniana. Hydrobiologia. doi:10.1007/s10750-016-2995-0.

    Article  Google Scholar 

  • Boedeltje, G., W. A. Ozinga & A. Prinzing, 2008. The trade-off between vegetative and generative reproduction among angiosperms influences regional hydrochorous propagule pressure. Global Ecology and Biogeography 17(1): 50–58.

    Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22(2): 361–369.

    Article  CAS  Google Scholar 

  • Davis, M. A., J. P. Grime & K. Thompson, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88(3): 528–534.

    Article  Google Scholar 

  • Fleming, J. P. & E. D. Dibble, 2015. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746(1): 23–37.

    Article  Google Scholar 

  • Huang, W., H. Shao, W. Li, H. Jiang & Y. Chen, 2016. Effects of urea on growth and photosynthetic metabolism of two aquatic plants (Cabomba caroliniana A. Gray and Elodea nuttallii (Planch.) H. St. John). Aquatic Botany. doi:10.1016/j.aquabot.2016.04.003.

    Article  Google Scholar 

  • Hussner, A., C. Meyer & J. Busch, 2009. The influence of water level and nutrient availability on growth and root system development of Myriophyllum aquaticum. Weed Research 49: 73–80.

    Article  CAS  Google Scholar 

  • Hussner, A., I. Stiers, M. J. J. M. Verhofstad, E. S. Bakker, B. M. C. Grutters, J. Haury, J. L. C. H. van Valkenburg, G. Brundu, J. Newman, J. S. Clayton, L. W. J. Anderson & D. Hofstra, 2017. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquatic Biology 136: 112–137.

    Article  Google Scholar 

  • Lamberti-Raverot, B. & S. Puijalon, 2012. Nutrient enrichment affects the mechanical resistance of aquatic plants. Journal of Experimental Botany 63(17): 6115–6123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lange, R. & D. J. Marshall, 2016. Propagule size and dispersal costs mediate establishment success of an invasive species. Ecology 97(3): 569–575.

    Article  PubMed  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution 20(5): 223–228.

    Article  Google Scholar 

  • Malheiro, A. C. E., P. Jahns & A. Hussner, 2013. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany 110: 31–37.

    Article  Google Scholar 

  • Puijalon, S., T. J. Bouma, J. V. Groenendael & G. Bornette, 2008. Clonal plasticity of aquatic plant species submitted to mechanical stress: escape versus resistance strategy. Annals of Botany 102:989–996.

  • Redekop, P., D. Hofstra & A. Hussner, 2016. Elodea canadensis shows a higher dispersal capacity via fragmentation than Egeria densa and Lagarosiphon major. Aquatic Botany 130: 45–49.

    Article  Google Scholar 

  • Riis, T. & K. Sand-Jensen, 2006. Dispersal of plant fragments in small streams. Freshwater Biology 51(2): 274–286.

    Article  Google Scholar 

  • Santamaría, L., 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.

    Article  Google Scholar 

  • Sheppard, A. W., R. H. Shaw & R. Sforza, 2005. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities regulations and other barriers to adoption. Weed Research 46: 93–117.

    Article  Google Scholar 

  • Silveira, M. J., S. M. Thomaz, R. P. Mormul & F. P. Camacho, 2009. Effects of desiccation and sediment type on early regeneration of plant fragments of three species of aquatic macrophytes. International Review of Hydrobiology 94(2): 169–178.

    Article  CAS  Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics 40: 81–102.

    Article  Google Scholar 

  • Sutton, D. L., 1985. Biology and ecology of Myriophyllum aquaticum. In Proceeding, 1st International Symposium on watermilfoil (Myriophyllum spicatum) and Related Haloragaceae Species, Vancouver, B. C., 1985: 59–71.

  • Sytsma, M. D. & L. W. J. Anderson, 1993a. Biomass, nitrogen, and phosphorus allocation in parrotfeather (Myriophyllum aquaticum). Journal of Aquatic Plant Management 31: 244–248.

    Google Scholar 

  • Sytsma, M. D. & L. W. J. Anderson, 1993b. Transpiration by an emergent macrophyte: source of water and implications for nutrient supply. Hydrobiologia 271(2): 97–108.

    Article  Google Scholar 

  • Teixeira, M. C., L. M. Bini & S. M. Thomaz, 2017. Biotic resistance buffers the effects of nutrient enrichment on the success of a highly invasive aquatic plant. Freshwater Biology 62(1): 65–71.

    Article  Google Scholar 

  • Thiébaut, G., 2007. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biological Invasions 9(1): 1–12.

    Article  Google Scholar 

  • Thomaz, S. M., R. P. Mormul & T. S. Michelan, 2015. Propagule pressure, invasibility of aquatic ecosystems by non-native macrophytes and their impacts on populations, communities and ecosystems: a review of tropical freshwater ecosystems. Hydrobiologia 746: 39–59.

    Article  Google Scholar 

  • Umetsu, C. A., H. B. A. Evangelista & S. M. Thomaz, 2012. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquatic Ecology 46: 443–449.

    Article  Google Scholar 

  • Wang, H., Q. Wang, P. A. Bowler & W. Xiong, 2016. Invasive aquatic plants in China. Aquatic Invasions 11(1): 1–9.

    Article  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2010. Comparison of subsurface and foliar herbicide applications for control of Parrotfeather (Myriophyllum aquaticum). Invasive Plant Science and Management 3: 262–267.

    Article  CAS  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2011a. Comparative effects of water level variations on growth characteristics of Myriophyllum aquaticum. Weed Research 51: 386–393.

    Article  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2011b. Influences of water column nutrient loading on growth characteristics of the invasive aquatic macrophyte Myriophyllum aquaticum (Vell.) Verdc. Hydrobiologia 665: 93–105.

    Article  CAS  Google Scholar 

  • Wersal, R. M., J. C. Cheshier, J. D. Madsen & P. D. Gerard, 2011. Phenology, starch allocation, and environmental effects on Myriophyllum aquaticum. Aquatic Botany 95: 194–199.

    Article  Google Scholar 

  • Xie, D. & D. Yu, 2011. Size-related auto-fragment production and carbohydrate storage in auto-fragment of Myriophyllum spicatum L. in response to sediment nutrient and plant density. Hydrobiologia 658: 221–231.

    Article  CAS  Google Scholar 

  • Xie, Y., Z. Li, W. P. Gregg & D. Li, 2001. Invasive species in China-an overview. Biodiversity and Conservation 10(8): 1317–1341.

    Article  Google Scholar 

  • Xie, Y., W. Luo, B. Ren & F. Li, 2007. Morphological and physiological responses to sediment type and light availability in roots of the submerged plant Myriophyllum spicatum. Annals of Botany 100: 1517–1523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, D., D. Yu, L. F. Yu & C. H. Liu, 2010. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655: 37–47.

    Article  Google Scholar 

  • Xie, D., D. Yu, W. H. You & C. X. Xia, 2013. The propagule supply, litter layers and canopy shade in the littoral community influence the establishment and growth of Myriophyllum aquaticum. Biological Invasions 15: 113–123.

    Article  Google Scholar 

  • You, W., D. Yu, C. Liu, D. Xie & W. Xiong, 2013a. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 718(1): 27–39.

    Article  Google Scholar 

  • You, W., D. Yu, C. Liu, D. Xie & W. Xiong, 2013b. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 718: 27–39.

    Article  Google Scholar 

  • You, W., D. Yu, D. Xie & L. Yu, 2013c. Overwintering survival and regrowth of the invasive plant Eichhornia crassipes are enhanced by experimental warming in winter. Aquatic Biology 19: 45–53.

    Article  Google Scholar 

  • You, W. H., D. Yu, D. Xie, C. Han & C. Liu, 2014. The invasive plant Alternanthera philoxeroides benefits from clonal integration in response to defoliation. Flora 209: 666–673.

    Article  Google Scholar 

  • You, W. H., C. Han, L. Fang & D. Du, 2016. Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides. Frontiers in Plant Science 7: 568.

    PubMed  PubMed Central  Google Scholar 

  • Zedler, J. & S. Kercher, 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23(5): 431–452.

    Article  Google Scholar 

  • Zhang, Y. Y., D. Y. Zhang & S. C. H. Barrett, 2010. Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology 19(9): 1774–1786.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. He Bai, Huijun Wang, and Mr. Huhui Chen for their laboratory/field assistance and helpful discussions. This research was supported by The Major Science and Technology Program for Water Pollution Control and Treatment (2015ZX07503-005-007), The National Natural Science Foundation of China (31370382), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), a start-up fund of Nanjing Forestry University (GXL035), and Forestry Science and Technology Innovation and Extension Program of Jiangsu (LYKJ[2017]10). R. P. Mormul is the Productivity Researcher of the Brazilian Council for Scientific and Technological Development (CNPq) and acknowledges this agency for continuous funding. The constructive comments of the reviewers and the editor helped to greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Xie or Honghua Ruan.

Additional information

Guest editors: John E. Havel, Sidinei M. Thomaz, Lee B. Kats, Katya E. Kovalenko & Luciano N. Santos / Aquatic Invasive Species II

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, D., Hu, Y., Mormul, R.P. et al. Fragment type and water nutrient interact and affect the survival and establishment of Myriophyllum aquaticum . Hydrobiologia 817, 205–213 (2018). https://doi.org/10.1007/s10750-017-3388-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3388-8

Keywords

Navigation