Skip to main content
Log in

Impacts of phosphorus concentration and light intensity on river periphyton biomass and community structure

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Periphyton growth rate has been identified as the key process that leads to river eutrophication. Effort has focused on reducing phosphorus concentrations to control periphyton biomass, but other factors, such as light, are also important. Within-stream flume mesocosms were deployed in the River Lambourn, UK, to investigate how light intensity and phosphorus concentrations affect periphyton biomass and community structure. Soluble reactive phosphorus (SRP) concentrations were tripled in some flumes, and decreased in others by dosing of FeCl3. Increasing SRP concentrations from the ambient concentration of 49 µg l−1 to 155 µg l−1 had no effect on biomass, but community composition (by flow cytometry) shifted from diatom to cyanobacterial dominance. Reducing light levels (equivalent to riparian tree shading) decreased biomass by 40%, showing that the biofilms were light limited at SRP concentration ≥49 µg l−1. Periphyton were phosphorus/light co-limited when SRP concentrations were reduced to 33 µg l−1. Further reductions in SRP concentration (23 µg l−1) resulted in phosphorus limitation of periphyton biomass and increased dominance of diatoms and chlorophytes within the biofilm. Reducing light intensity through providing riparian tree shading could be an important management tool to reduce periphyton biomass and improve ecological status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington D.C.

    Google Scholar 

  • Bernhardt, E. S. & G. E. Likens, 2004. Controls on periphyton biomass in heterotrophic streams. Freshwater Biology 49: 14–27.

    Article  Google Scholar 

  • Bowes, M. J., J. T. Smith, J. Hilton, M. M. Sturt & P. D. Armitage, 2007. Periphyton biomass response to changing phosphorus concentrations in a nutrient-impacted river: a new methodology for phosphorus target setting. Canadian Journal of Fisheries and Aquatic Sciences 64: 227–238.

    Article  CAS  Google Scholar 

  • Bowes, M. J., K. Lehmann, H. P. Jarvie & A. C. Singer, 2010a. Investigating periphyton response to changing phosphorus concentrations in UK rivers using within-river flumes. British Hydrological Society Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle-upon-Tyne

  • Bowes, M. J., C. Neal, H. P. Jarvie, J. T. Smith & H. N. Davies, 2010b. Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent. Science of the Total Environment 408: 4239–4250.

    Article  CAS  PubMed  Google Scholar 

  • Bowes, M. J., E. Gozzard, A. C. Johnson, P. M. Scarlett, C. Roberts, D. S. Read, L. K. Armstrong, S. A. Harman & H. D. Wickham, 2012a. Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass? Science of the Total Environment 426: 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Bowes, M. J., N. L. Ings, S. J. McCall, A. Warwick, C. Barrett, H. D. Wickham, S. A. Harman, L. K. Armstrong, P. M. Scarlett, C. Roberts, K. Lehmann & A. C. Singer, 2012b. Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Science of the Total Environment 434: 201–212.

    Article  CAS  PubMed  Google Scholar 

  • Bowes, M. J., H. P. Jarvie, P. S. Naden, G. H. Old, P. M. Scarlett, C. Roberts, L. K. Armstrong, S. A. Harman, H. D. Wickham & A. L. Collins, 2014. Identifying priorities for nutrient mitigation using river concentration–flow relationships: the Thames basin, UK. Journal of Hydrology 517: 1–12.

    Article  CAS  Google Scholar 

  • Kelly, M. G. & S. Wilson, 2004. Effect of phosphorus stripping on water chemistry and diatom ecology in an eastern lowland river. Water Research 38: 1559–1567.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, M. G., C. Adams, A. C. Graves, J. Jamieson, J. Krokowski, E. Lycett, J. Murray-Bligh, S. Pritchard & C. Wilkins, 2001. The Trophic Diatom Index: A User’s Manual. Revised Edition. Environment Agency, Bristol.

    Google Scholar 

  • Sanderson, B. L., H. J. Coe, C. D. Tran, K. H. Macneale, D. L. Harstad & A. B. Goodwin, 2009. Nutrient limitation of periphyton in Idaho streams: results from nutrient diffusing substrate experiments. Journal of North American Benthological Society 28: 832–845.

    Article  Google Scholar 

  • Council of European Communities, 1991a. Council directive of 12 December 1991 concerning the protection of water against pollution caused by nitrates from agricultural sources In http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1991:375:0001:0008:EN:PDF Accessed 1st July 2013.

  • Council of European Communities, 1991b. Council directive of 21 May 1991 concerning wastewater treatment (91/271/EEC) In http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1991:135:0040:0052:EN:PDF Accessed 1st July 2013.

  • Council of European Communities, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for the Community action in the field of water policy. In http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:EN:PDF Accessed 30th August 2011.

  • Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1905–1908.

    Article  Google Scholar 

  • Eisenreich, S. J., R. T. Bannerman & D. E. Armstrong, 1975. A simplified phosphorus analysis technique. Environmental Letters 9: 43–53.

    Article  CAS  Google Scholar 

  • Flynn, N. J., D. L. Snook, A. J. Wade & H. P. Jarvie, 2002. Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream: the River Kennet, a tributary of the Thames. Science of the Total Environment 282: 143–157.

    Article  Google Scholar 

  • Francoeur, S. N., B. J. F. Biggs, R. A. Smith & R. L. Lowe, 1999. Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. Journal of North American Benthological Society 18: 242–260.

    Article  Google Scholar 

  • Greenwood, J. L. & A. D. Rosemond, 2005. Periphyton response to long-term nutrient enrichment in a shaded headwater stream. Canadian Journal of Fisheries and Aquatic Sciences 62: 2033–2045.

    Article  CAS  Google Scholar 

  • Halliday, S. J., R. A. Skeffington, A. J. Wade, M. J. Bowes, D. S. Read, H. P. Jarvie & M. Loewenthal, 2016. Riparian shading controls instream spring phytoplankton and benthic algal growth. Environmental Science, Processes & Impacts 18: 677–689.

    Article  CAS  Google Scholar 

  • Hill, W. R. & S. E. Fanta, 2008. Phosphorus and light colimit periphyton growth at subsaturating irradiances. Freshwater Biology 53: 215–225.

    CAS  Google Scholar 

  • Hill, W. R., S. E. Fanta & B. J. Roberts, 2009. Quantifying phosphorus and light effects in stream algae. Limnology and Oceanography 54: 368–380.

    Article  CAS  Google Scholar 

  • Hilton, J., M. O’Hare, M. J. Bowes & J. I. Jones, 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365: 66–83.

    Article  CAS  PubMed  Google Scholar 

  • Hutchins, M. G., A. C. Johnson, A. Deflandre-Vlandas, S. Comber, P. Posen & D. Boorman, 2010. Which offers more scope to suppress river phytoplankton blooms: reducing nutrient pollution or riparian shading? Science of the Total Environment 408: 5065–5077.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R. K. & K. Almlof, 2016. Adapting boreal streams to climate change: effects of riparian vegetation on water temperature and biological assemblages. Freshwater Science 35: 984–997.**

    Article  Google Scholar 

  • Kelly, M. G., H. Bennion, E. J. Cox, B. Goldsmith, J. Jamieson, S. Juggins, D. G. Mann & R. J. Telford, 2005. Common Freshwater Diatoms of Britain and Ireland: An Interactive Key. Environment Agency, Bristol.

    Google Scholar 

  • Keppel, G. & T. D. Wickens, 2004. Design and Analysis: A Researcher’s Handbook, 4th ed. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Kinniburgh, J. H. & M. Barnett, 2010. Orthophosphate concentrations in the River Thames: reductions in the past decade. Water and Environment Journal 24: 107–115.

    Article  CAS  Google Scholar 

  • Lewis, J. W. M. & J. J. H. McCutchan, 2010. Ecological responses to nutrients in streams and rivers of the Colorado mountains and foothills. Freshwater Biology 55: 1973–1983.

    Article  Google Scholar 

  • Lewis, W. M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science 192: 885–887.

    Article  PubMed  Google Scholar 

  • Marsh, T. J. & J. Hannaford, 2008. UK Hydrometric Register. Hydrological Data UK Series. Centre for Ecology and Hydrology, Wallingford: 210.

    Google Scholar 

  • McCall, S. J., M. J. Bowes, T. A. Warnaars, M. S. Hale, J. T. Smith, A. Warwick & C. Barrett, 2014. Impacts of phosphorus and nitrogen enrichment on periphyton accrual in the River Rede, Northumberland, UK. Inland Waters 4: 121–132.

    Article  CAS  Google Scholar 

  • Mebane, C. A., N. S. Simon & T. R. Maret, 2014. Linking nutrient enrichment and streamflow to macrophytes in agricultural streams. Hydrobiologia 722: 143–158.

    Article  CAS  Google Scholar 

  • Mullin, J. B. & J. P. Riley, 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Analytica Chimica Acta 12: 162–176.

    Article  CAS  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphorus in natural waters. Analytica Chimica Acta 12: 31–36.

    Article  Google Scholar 

  • Neal, C., E. Martin, M. Neal, J. Hallett, H. D. Wickham, S. A. Harman, L. K. Armstrong, M. J. Bowes, A. J. Wade & D. Keay, 2010. Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal. Science of the Total Environment 408: 5306–5316.

    Article  CAS  PubMed  Google Scholar 

  • Old, G. H., P. S. Naden, P. Rameshwaran, M. C. Acreman, S. Baker, F. K. Edwards, J. P. R. Sorensen, O. Mountford, D. C. Gooddy, C. J. Stratford, P. M. Scarlett, J. R. Newman & M. Neal, 2014. Instream and riparian implications of weed cutting in a chalk river. Ecological Engineering 71: 290–300.

    Article  Google Scholar 

  • Read, D. S., M. J. Bowes, L. K. Newbold & A. S. Whiteley, 2014. Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics. Environmental Science: Processes & Impacts 16: 594–603.

    CAS  Google Scholar 

  • Schiller, D. V., E. MartÍ, J. L. Riera & F. Sabater, 2007. Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology 52: 891–906.

    Article  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  CAS  PubMed  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.

    Article  CAS  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2001. Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnology and Oceanography 46: 356–367.

    Article  Google Scholar 

  • Stephens, S. H., A. M. D. Brasher & C. M. Smith, 2012. Response of an algal assemblage to nutrient enrichment and shading in a Hawaiian stream. Hydrobiologia 683: 135–150.

    Article  CAS  Google Scholar 

  • Sturt, M. M., M. A. K. Jansen & S. S. C. Harrison, 2011. Invertebrate grazing and riparian shade as controllers of nuisance algae in a eutrophic river. Freshwater Biology 56: 2580–2593.

    Article  Google Scholar 

  • Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049.

    Article  CAS  Google Scholar 

  • UKTAG, 2013. Phosphorus standards for rivers. Updated recommendations. UK Technical Advisory Group, August 2013. In http://www.wfduk.org/sites/default/files/Media/UKTAG%20Phosphorus%20Standards%20for%20Rivers_Final%20130906.PDF Accessed 14th October 2013.

  • Van der Grinten, E., S. G. H. Simis, C. Barranguet & W. Admiraal, 2004. Dominance of diatoms over cyanobacterial species in nitrogen-limited biofilms. Archiv fr Hydrobiologie 161: 98–111.

    Article  Google Scholar 

  • Vrede, T., A. Ballantyne, C. Mille-Lindblom, G. Algesten, C. Gudasz, S. Lindahl & A. K. Brunberg, 2009. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology 54: 331–344.

    Article  CAS  Google Scholar 

  • Wagenhoff, A., K. Lange, C. R. Townsend & C. D. Matthaei, 2013. Patterns of benthic algae and cyanobacteria along twin-stressor gradients of nutrients and fine sediment: a stream mesocosm experiment. Freshwater Biology 58: 1849–1863.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a UK Natural Environment Research Council algorithm PhD studentship, NEC04269, and through NERC National Capability funding. The authors thank Alan Warwick and Cyril Barrett (CEH) for the design, manufacture and installation of the flume mesocosms, Gareth Old (CEH) for allowing access to the long-term River Lambourn Observatory data, Emma Gozzard (CEH) for assistance with GIS and Linda Armstrong, Sarah Harman and Heather Wickham (CEH chemistry laboratory, Wallingford) for their help and support in the analytical analyses. We would also like to thank the two anonymous reviewers whose comments contributed to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Bowes.

Additional information

Handling editor: Verónica Jacinta Lopes Ferreira

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2016_3067_MOESM1_ESM.pptx

Fig. S1. Light intensities monitored within flumes in full light and under shading cloths, throughout the 10 day experiment. Light loggers were submerged at a depth of 4 cm. Supplementary material 1 (PPTX 38 kb)

10750_2016_3067_MOESM2_ESM.pptx

Fig. S2. Water temperatures in shaded and unshaded regions of two flumes, and River Lambourn river water during the course of the 10 day experiment. Supplementary material 2 (PPTX 155 kb)

Table S1. Diatom species list with TDI scores. Supplementary material 3 (DOCX 37 kb)

10750_2016_3067_MOESM4_ESM.xlsx

Table S2. Average nutrient concentrations from longitudinal surveys along the River Lambourn, conducted at monthly intervals between May 2012 and April 2013. Supplementary material 4 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCall, S.J., Hale, M.S., Smith, J.T. et al. Impacts of phosphorus concentration and light intensity on river periphyton biomass and community structure. Hydrobiologia 792, 315–330 (2017). https://doi.org/10.1007/s10750-016-3067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3067-1

Keywords

Navigation