Skip to main content
Log in

Strategies to avoid the trap: stream fish use fine-scale hydrological cues to move between the stream channel and temporary pools

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

For species living in highly variable environments, the ability to perceive and respond to environmental cues by moving into favorable habitats should convey evolutionary advantages. Here we examined the spatial dynamics of an Amazonian pencil fish species that shows seasonally varying use of stream channel and temporary pool habitats. We hypothesized that movement into the pools should be driven by cues that reflect availability of spawning sites, whereas movement out of the pools should be driven by cues that help avoid entrapment as water level declines. Survival, detection, and movement probabilities were estimated from capture histories of individuals recorded on 13 surveys along a hydrological cycle. Differences between habitats were small for detection probability and survival. Movement from stream to pools was greatest during bankfull overflow, whereas movement from pools to stream was related to rapid decline in pool area. Entry to pools during overflow may allow fish to choose favorable spawning sites while still permitting a swift return to the stream if conditions in pools deteriorate. The ability to interpret hydrological cues seems to allow pencil fish to cope with environmental uncertainty by timing its use of seasonally available spawning sites while avoiding entrapment in desiccating pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Coordination of Environmental Dynamics, CDAM, INPA; b Seasonal variation in total pool area along the 50-m study stretch in Reserva Ducke. Area measurements for 13 surveys conducted along one seasonal rainfall cycle are shown. Vertical dashed lines correspond to survey dates

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bauer, S., B. A. Nolet, J. Giske, J. W. Chapman, S. Åkesson, A. Hedenström & J. M. Fryxell, 2011. Cues and decision rules in animal migration. In Milner-Gulland, E. J., J. M. Fryxell & A. R. E. Sinclair (eds), Oxford University Press, New York: 68–87.

  • Bénech, V. & M. Peñáz, 1995. An outline on lateral fish migrations within the Central Delta of the Niger River, Mali. Hydrobiologia 303: 149–157.

    Article  Google Scholar 

  • Breininger, D. R., J. D. Nichols, G. M. Carter & D. M. Oddy, 2009. Habitat-specific breeder survival of Florida scrub-jays: inferences from multistate models. Ecology 90: 3180–3189.

    Article  PubMed  Google Scholar 

  • Calvert, A. M., S. J. Bonner, I. D. Jonsen, J. M. Flemming, S. J. Walde & P. D. Taylor, 2009. A hierarchical Bayesian approach to multi-state mark–recapture: simulations and applications. Journal of Applied Ecology 46: 610–620.

    Article  Google Scholar 

  • Cossette, C. & M. A. Rodríguez, 2004. Summer use of a small stream by fish and crayfish and exchanges with adjacent lentic macrohabitats. Freshwater Biology 49: 931–944.

    Article  Google Scholar 

  • DeAngelis, D. L., J. C. Trexler & W. F. Loftus, 2005. Life history trade-offs and community dynamics of small fishes in a seasonally pulsed wetland. Canadian Journal of Fisheries and Aquatic Sciences 62: 781–790.

    Article  Google Scholar 

  • Development Core Team, R., 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Doherty, P. F., G. C. White & K. P. Burnham, 2010. Comparison of model building and selection strategies. Journal of Ornithology 152: 317–323.

    Article  Google Scholar 

  • Dupuis, J. A., 1995. Bayesian estimation of movement and survival probabilities from capture- recapture data. Biometrika 82: 761–772.

    Google Scholar 

  • Espírito-Santo, H. M. V. & J. Zuanon, 2016. Temporary pools provide stability to fish assemblages in Amazon headwater streams. Ecology of Freshwater Fish. doi:10.1111/eff.12292.

    Google Scholar 

  • Espírito-Santo, H. M. V., W. E. Magnusson, J. Zuanon, F. P. Mendonça & V. L. Landeiro, 2009. Seasonal variation in the composition of fish assemblages in small Amazonian forest streams: evidence for predictable changes. Freshwater Biology 54: 536–548.

    Article  Google Scholar 

  • Espírito-Santo, H. M. V., M. A. Rodríguez & J. Zuanon, 2013. Reproductive strategies of Amazonian stream fishes and their fine-scale use of habitat are ordered along a hydrological gradient. Freshwater Biology 58: 2494–2504.

    Article  Google Scholar 

  • Fernandes, C. C., 1997. Lateral migration of fishes in Amazon floodplains. Ecology of Freshwater Fish 6: 36–44.

    Article  Google Scholar 

  • Finer, M. & C. N. Jenkins, 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7(1–9): e35126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga, R. D., A. P. Lima, A. D. C. Prudente & W. E. Magnusson, 2013. Guide to the Snakes of the Manaus Region, Central Amazonia. Editora INPA, Manaus.

    Google Scholar 

  • Fraser, D. F. & J. F. Gilliam, 1992. Nonlethal impacts of predator invasion: facultative suppression of growth and reproduction. Ecology 73: 959–970.

    Article  Google Scholar 

  • Fretwell, S. D. & J. H. L. Lucas, 1970. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica 1: 16–35.

    Google Scholar 

  • Gelman, A. & J. Hill, 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York.

    Google Scholar 

  • Gelman, A., J. Hwang & A. Vehtari, 2014. Understanding predictive information criteria for Bayesian models. Statistics and Computing 24: 997–1016.

    Article  Google Scholar 

  • Gibb, A. C., M. A. Ashley-Ross, C. M. Pace & J. H. Long Jr., 2011. Fish out of water: terrestrial jumping by fully aquatic fishes. Journal of Experimental Zoology 315: 649–653.

    Article  PubMed  Google Scholar 

  • Goulding, M., 1989. The fishes and the forest, explorations in amazonian natural history. University of California Press, Los Angeles.

    Google Scholar 

  • Hamada, N., J. L. Nessimian & R. B. Querino, 2014. Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia. Editora INPA, Manaus.

    Google Scholar 

  • Hohausová, E., G. H. Copp & P. Jankovsky, 2003. Movement of fish between a river and its backwater: diel activity and relation to environmental gradients. Ecology of Freshwater Fish 12: 107–117.

    Article  Google Scholar 

  • Huntsman, A. G., 1948. Freshets and fish. Transactions of the American Fisheries Society 75: 257–266.

    Article  Google Scholar 

  • Jensen, A. J., T. G. Heggberget & B. O. Johnsen, 1986. Upstream migration of adult Atlantic salmon, Salmo salar L., in the River Vefsna, northern Norway. Journal of Fish Biology 29: 459–465.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication in Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Kéry, M. & M. Schaub, 2012. Bayesian population analysis using winbugs—a hierarchical perspective. Academic Press, Burlington.

    Google Scholar 

  • Knöppel, H.-A., 1970. Food of central amazon fishes. Amazoniana 2: 237–352.

    Google Scholar 

  • Kwak, T. J., 1988. Lateral movement and use of floodplain habitat by fishes of the Kankakee River, Illinois. American Midland Naturalist 120: 241–249.

    Article  Google Scholar 

  • Lebreton, J.-D., J. D. Nichols, R. J. Barker, R. Pradel & J. A. Spendelow, 2009. Modeling individual animal histories with multistate capture–recapture models. In Caswell, H. (ed), Vol. 41. Elsevier Ltd., Burlington: 87–173.

  • Lima, A. P., W. E. Magnusson, M. Menin, L. K. Erdtmann, D. J. Rodrigues, C. Keller & W. Hödl, 2006. Guide to the Frogs of Reserva Adolpho Ducke, Central Amazonia. Editora INPA, Manaus.

    Google Scholar 

  • Lyon, J., I. Stuart, D. Ramsey & J. O’Mahoney, 2010. The effect of water level on lateral movements of fish between river and off-channel habitats and implications for management. Marine and Freshwater Research 61: 271–278.

    Article  CAS  Google Scholar 

  • Martins, M. & M. E. Oliveira, 1999. Natural history of snakes in forest in the Manaus region, Central Amazonia, Brazil. Herpetological Natural History 6: 78–150.

    Google Scholar 

  • McLinn, C. M. & D. W. Stephens, 2006. What makes information valuable: signal reliability and environmental uncertainty. Animal Behaviour 71: 1119–1129.

    Article  Google Scholar 

  • McNamara, J. M., Z. Barta, M. Klaassen & S. Bauer, 2011. Cues and the optimal timing of activities under environmental changes. Ecology Letters 14: 1183–1190.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendonça, F. P., W. E. Magnusson & J. Zuanon, 2005. Relationships between habitat characteristics and fish assemblages in small streams of central Amazonia. Copeia 2005: 751–764.

    Article  Google Scholar 

  • Osorio, D., J. Terborgh, A. Alvarez, H. Ortega, R. Quispe, V. Chipollini & L. C. Davenport, 2011. Lateral migration of fish between an oxbow lake and an Amazonian headwater river. Ecology of Freshwater Fish 20: 619–627.

    Article  Google Scholar 

  • Pace, C. M. & A. C. Gibb, 2014. Sustained periodic terrestrial locomotion in air-breathing fishes. Journal of Fish Biology 84: 639–660.

    Article  CAS  PubMed  Google Scholar 

  • Pazin, V. F. V., W. E. Magnusson, J. Zuanon & F. P. Mendonça, 2006. Fish assemblages in temporary ponds adjacent to “terra-firme” streams in Central Amazonia. Freshwater Biology 51: 1025–1037.

    Article  Google Scholar 

  • Pelicice, F. M. & A. A. Agostinho, 2008. Fish-passage facilities as ecological traps in large Neotropical rivers. Conservation Biology 22: 180–188.

    Article  PubMed  Google Scholar 

  • Plummer, M., 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Viena.

  • Plummer, M., 2006. CODA: convergence diagnosis and output analysis for MCMC. R News 6: 7–11.

    Google Scholar 

  • Plummer, M., 2014. Rjags: Bayesian graphical models using MCMC. R package version 3–13.

  • Poirier, J. M., T. A. Whitesel & J. R. Johnson, 2012. Chum salmon spawning activity in tributaries below Bonneville dam: the relationship with tailwater elevation and seasonal precipitation. River Research and Applications 28: 882–892.

    Article  Google Scholar 

  • Robertson, B. A. & R. L. Hutto, 2006. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87: 1075–1085.

    Article  PubMed  Google Scholar 

  • Rodrigues, D. J., A. P. Lima, W. E. Magnusson & F. R. C. Costa, 2010. Temporary pond availability and tadpole species composition in central Amazonia. Herpetologica 66: 124–130.

    Article  Google Scholar 

  • Rosenzweig, M. L., 1981. A theory of habitat selection. Ecology 62: 327–335.

    Article  Google Scholar 

  • Royle, J. A. & K. V. Young, 2008. A hierarchical model for spatial capture-recapture data. Ecology 89: 2281–2289.

    Article  PubMed  Google Scholar 

  • Rypel, A. L., K. M. Pounds & R. H. Findlay, 2012. Spatial and temporal trade-offs by bluegills in floodplain river ecosystems. Ecosystems 15: 555–563.

    Article  Google Scholar 

  • Schlaepfer, M. A., M. C. Runge & P. W. Sherman, 2002. Ecological and evolutionary traps. Trends in Ecology & Evolution 17: 474–480.

    Article  Google Scholar 

  • Schofield, M. R., R. J. Barker & D. I. MacKenzie, 2009. Flexible hierarchical mark-recapture modeling for open populations using WinBUGS. Environmental and Ecological Statistics 16: 369–387.

    Article  Google Scholar 

  • Stoffels, R. J., K. R. Clarke, R. A. Rehwinkel & B. J. McCarthy, 2014. Response of a floodplain fish community to river-floodplain connectivity: natural versus managed reconnection. Canadian Journal of Fisheries and Aquatic Sciences 71: 236–245.

    Article  Google Scholar 

  • Stoffels, R. J., R. A. Rehwinkel, A. E. Price & W. E. Fagan, 2016. Dynamics of fish dispersal during river-floodplain connectivity and its implications for community assembly. Aquatic Sciences 78: 355–365.

    Article  CAS  Google Scholar 

  • Súarez, Y. R., M. Petrere-Júnior & A. C. Catella, 2004. Factors regulating diversity and abundance of fish communities in Pantanal lagoons, Brazil. Fisheries Management and Ecology 11: 45–50.

    Article  Google Scholar 

  • Tomasella, J., M. G. Hodnett, L. A. Cuartas, A. D. Nobre, M. J. Waterloo & S. M. Oliveira, 2008. The water balance of an Amazonian micro-catchment: the effect of interannual variability of rainfall on hydrological behaviour. Hydrological Processes 22: 2133–2147.

    Article  Google Scholar 

  • Trépanier, S., M. A. Rodríguez & P. Magnan, 1996. Spawning migrations in landlocked Atlantic salmon: time series modelling of river discharge and water temperature effects. Journal of Fish Biology 48: 925–936.

    Article  Google Scholar 

  • Urban, D. & T. Keitt, 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82: 1205–1218.

    Article  Google Scholar 

  • Vogt, R. C., 2008. Tartarugas da amazônia. Grafico Biblos, Lima.

    Google Scholar 

  • Williams, D. D., 2006. The biology of temporary waters. Oxford University Press, New York.

    Google Scholar 

  • Williams, B. K. & J. D. Nichols, 1984. Optimal timing in biological processes. The American Naturalist 123: 1–19.

    Article  Google Scholar 

  • Winemiller, K. O., 1989. Patterns of variation in life history among South American fishes in seasonal environments. Oecologia 81: 225–241.

    Article  PubMed  Google Scholar 

  • Winemiller, K. O. & D. B. Jepsen, 1998. Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology 53: 267–296.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sr. J. Lopes, M. Carvalho, J. Sodré, P. Guarido, C. Gualberto, M. Guimarães, O. “Juruna” Pereira, T. Bicudo, R. Leitão, M. Pedrosa, D. Bastos, and C. Freitas for field assistance. HMVES thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for doctoral and postdoctoral scholarships and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for international internship support; MAR thanks the Natural Sciences and Engineering Research Council of Canada for financial support (#4865). JZ receives a productivity grant from CNPq (#313183/2014-7). Supplementary logistical support was provided by Projetos Ecológicos de Longa Duração (PELD) and Programa de Pesquisa em Biodiversidade (PPBio). CNPq and Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM) provided long-term financial support to Projeto Igarapés. This is contribution # 47 of Projeto Igarapés.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder M. V. Espírito-Santo.

Additional information

Handling editor: Alison King

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espírito-Santo, H.M.V., Rodríguez, M.A. & Zuanon, J. Strategies to avoid the trap: stream fish use fine-scale hydrological cues to move between the stream channel and temporary pools. Hydrobiologia 792, 183–194 (2017). https://doi.org/10.1007/s10750-016-3054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3054-6

Keywords

Navigation