Skip to main content
Log in

Growth rates and tolerance to low water temperatures of freshwater bacterioplankton strains: ecological insights from shallow hypereutrophic lakes in Japan

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To investigate differences in culturable freshwater bacterioplankton between summer and winter, we examined specific bacterioplankton in the low temperature surface water of two shallow, hypereutrophic, temperate lakes in Japan over two winters, and compared our results with the previously published data. We used the size-exclusion assay method (SEAM), a cultivation-based approach that simply and effectively isolates typical freshwater bacterioplankton. The specific clusters detected in the winter samples were the Rhodoferax sp. BAL47 cluster (LimA and LimC), a predominant and ubiquitous freshwater lineage, and the LiUU-5-340 cluster. To confirm tolerance to low water temperature of winter-specific groups, we also compared growth rates at 5°C among several pure strains of typical freshwater bacterioplankton clusters belonging to the Rhodoferax sp. BAL47, Polynucleobacter necessarius, GKS98, LiUU-5-340, and IRD18C08 of the class Betaproteobacteria, and the Luna-1 and Luna-2 of the class Actinobacteria. Specific detectability of freshwater bacterioplankton clusters/subclusters by SEAM in the winter sample substantially correlated with the low temperature-specific growth characteristics of each isolate. Response to water temperature is a key control factor in freshwater bacterioplankton assemblage composition. These results provide important insights into the specific response to water temperature of several ubiquitous culturable freshwater bacterioplankton clusters inhabiting a temperate climate zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Bertilsson, S., A. Eiler, A. Nordqvist & N. O. G. Jørgensen, 2007. Links between bacterial production, amino-acid utilization and community composition in productive lakes. The ISME Journal 1: 532–544.

    Article  CAS  PubMed  Google Scholar 

  • Bruns, A., H. Hoffelner & J. Overmann, 2003. A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiology Ecology 45: 161–171.

    Article  CAS  PubMed  Google Scholar 

  • Buck, U., H.-P. Grossart, R. Amann & J. Pernthaler, 2009. Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environmental Microbiology 11: 1854–1865.

    Article  CAS  PubMed  Google Scholar 

  • Eiler, A. & S. Bertilsson, 2004. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology 6: 1228–1243.

    Article  PubMed  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Fuhrman, J. A., J. A. Steele, I. Hewson, M. S. Schwalbach, M. V. Brown, J. L. Green & J. H. Brown, 2008. A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences of the United States of America 105: 7774–7778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia, S. L., K. D. McMahon, M. Martinez-Garcia, A. Srivastava, A. Sczyrba, R. Stepanauskas, H.-P. Grossart, T. Woyke & F. Warnecke, 2013. Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. The ISME Journal 7: 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, S., K. D. McMahon, H.-P. Grossart & F. Warnecke, 2014. Successful enrichment of the ubiquitous freshwater acI Actinobacteria. Environmental Microbiology Reports 6: 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, S., M. Buck, K. D. McMahon, H.-P. Grossart, A. Eiler & F. Warnecke, 2015. Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Molecular Ecology 24: 4449–4459.

    Article  CAS  PubMed  Google Scholar 

  • Ghai, R., C. M. Mizuno, A. Picazo, A. Camacho & F. Rodriguez-Valera, 2014. Key roles for freshwater Actinobacteria revealed by deep metagenomics sequencing. Molecular Ecology 23: 6073–6090.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, M. W., 2003. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Applied and Environmental Microbiology 69: 5248–5254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M. W., 2006. The microbial diversity of inland waters. Current Opinion in Biotechnology 17: 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, M. W. & M. Pöckl, 2005. Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted thermal niches in temperate, subtropical, and tropical freshwater habitats. Applied and Environmental Microbiology 71: 766–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M. W., P. Stadler, Q. L. Wu & M. Pöckl, 2004. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. Journal of Microbiological Methods 57: 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, M. W., M. Pöckl & Q. L. Wu, 2005. Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Applied and Environmental Microbiology 71: 4539–4547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M. W., E. Lang, U. Brandt, Q. L. Wu & T. Scheuerl, 2009. Emended description of the genus Polynucleobacter and the species P. necessarius and proposal of two subspecies, P. necessarius subspecies necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. International Journal of Systematic and Evolutionary Microbiology 59: 2002–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M. W., V. Kasalický, J. Jezbera, U. Brandt, J. Jezberová & K. Šimeck, 2010a. Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. International Journal of Systematic and Evolutionary Microbiology 60: 1358–1365.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, M. W., V. Kasalický, J. Jezbera, U. Brandt & K. Šimek, 2010b. Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. International Journal of Systematic and Evolutionary Microbiology 60: 2946–2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, M. W., U. Koll, J. Jezberová & A. Camacho, 2015. Global phylogeography of pelagic Polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance and influence of climate. Environmental Microbiology 17: 829–840.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, M. W., J. Jezberová, U. Koll & T. Saueressing-Beck, 2016a. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. The ISME Journal 10: 1642–1655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn, M. W., J. Schmidt, A. Pitt, S. J. Taipale & E. Lang, 2016b. Reclassification of four Polynucleobacter necessarius strains as Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov., and Polynucleobacter sinensis sp. nov., and emended description of the species Polynucleobacter necessarius. International Journal of Systematic and Evolutionary Microbiology 66: 2883–2892.

    Article  PubMed  Google Scholar 

  • Horňák, K., J. Jezbera, J. Nedoma, J. M. Gasol & K. Šimek, 2006. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquatic Microbial Ecology 45: 277–289.

    Article  Google Scholar 

  • Hutalle-Schmelzer, K. M. L., E. Zwirnmann, A. Krüger & H.-P. Grossart, 2010. Enrichment and cultivation of pelagicbacteria from a humic lake using phenol and humic matter additions. FEMS Microbiology Ecology 72: 58–73.

    Article  CAS  PubMed  Google Scholar 

  • Jezbera, J., J. Jezberová, U. Brandt & M. W. Hahn, 2011. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environmental Microbiology 13: 922–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezbera, J., J. Jezberová, U. Koll, K. Horňák, K. Šimek & M. W. Hahn, 2012. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiology Ecology 81: 467–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezbera, J., J. Jezberová, V. Kasalický, K. Šimek & M. W. Hahn, 2013. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization. PLoS ONE 8: e58527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasalický, V., J. Jezbera, K. Šimek & M. W. Hahn, 2010. Limnohabitans planktonicus sp. nov., and Limnohabitans purvus sp. nov., two novel planktonic Betaproteobacteria isolated from a freshwater reservoir and emended description of the genus Limnohabitans. International Journal of Systematic and Evolutionary Microbiology 60: 2710–2714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kasalický, V., J. Jezbera, M. W. Hahn & K. Šimek, 2013. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE 8: e58209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, O.-S., Y.-J. Cho, K. Lee, S.-H. Yoon, M. Kim, H. Na, S.-C. Park, Y. S. Jeon, J.-H. Lee, H. Yi, S. Won & J. Chun, 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology 62: 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Newton, R. J., S. E. Jones, A. Eiler, K. D. McMahon & S. Bertilsson, 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75: 14–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.

    Article  Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenic trees. Molecular Biology and Evolution 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Salcher, M. M., J. Pernthaler & T. Posch, 2011. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12). The ISME Journal 5: 1242–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salcher, M. M., T. Posch & J. Pernthaler, 2013. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. The ISME Journal 7: 896–907.

    Article  CAS  PubMed  Google Scholar 

  • Šimek, K., J. Pernthaler, M. G. Weinbauer, K. Horňák, J. R. Dolan, J. Nedoma, M. Masín & R. Amann, 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Applied and Environmental Microbiology 67: 2723–2733.

    Article  PubMed  PubMed Central  Google Scholar 

  • Šimek, K., K. Horňák, J. Jezbera, M. Mašín, J. Nedoma, J. M. Gasol & M. Schauer, 2005. Influence of top-down and bottom-up manipulations on the R-BT065 subclusters of β-proteobacteria, an abundant group in bacterioplankton of a freshwater reservoir. Applied and Environmental Microbiology 71: 2381–2390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Šimek, K., K. Horňák, J. Jezbera, J. Nedoma, J. Vrba, V. Straškrábová, M. Macek, J. R. Dolan & M. W. Hahn, 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environmental Microbiology 8: 1613–1624.

    Article  PubMed  Google Scholar 

  • Šimek, K., V. Kasalický, J. Jezbera, J. Jezberová, J. Hejzlar & M. W. Hahn, 2010. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing core group of the betaproteobacterial genus Limnohabitans. Applied and Environmental Microbiology 76: 631–639.

    Article  PubMed  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, X., G. Gao, J. Chao, X. Wang, G. Zhu & B. Qin, 2010. Dynamics of organic-aggregate-associated bacterial communities and related environmental factors in Lake Taihu, a large eutrophic shallow lake in China. Limnology and Oceanography 55: 469–480.

    Article  CAS  Google Scholar 

  • Tarao, M., J. Jezbera & M. W. Hahn, 2009. Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Applied and Environmental Microbiology 75: 4720–4726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnecke, F., R. Sommaruga, R. Sekar, J. S. Hofer & J. Pernthaler, 2005. Abundances, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Applied and Environmental Microbiology 71: 5551–5559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, K., N. Komatsu, Y. Ishii & M. Negishi, 2009. Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiology Ecology 67: 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, K., N. Komatsu, T. Kitamura, Y. Ishii, H.-D. Park, R. Miyata, N. Noda, Y. Sekiguchi, T. Satou, M. Watanabe, S. Yamamura, A. Imai & S. Hayashi, 2012. Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environmental Microbiology 14: 2511–2525.

    Article  PubMed  Google Scholar 

  • Wu, Q. L. & M. W. Hahn, 2006. Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiology Ecology 57: 67–79.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., W. Xi, W. Ye & H. Yang, 2007. Bacterial community composition of a shallow hypertrophic lake in China, revealed by 16S rRNA gene sequences. FEMS Microbiology Ecology 61: 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Zwart, G., E. J. van Hannen, M. P. Kamst-van Agterveld, K. Van der Gucht, E. S. Lindström, J. Van Wichelen, T. Lauridsen, B. C. Crump, S.-K. Han & S. Declerck, 2003. Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Applied and Environmental Microbiology 69: 5875–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Iida for helping in depositing the isolated strains in the Japan Collection of Microorganisms. We acknowledge the members of Ibaraki Kasumigaura Environmental Science Center for their kind cooperation. This work was supported by a Grant-in-Aid for Young Scientists (B) 23710023 and 15K16122 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Watanabe.

Additional information

Handling editor: Stefano Amalfitano

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 35 kb)

Supplementary material 2 (XLS 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, K., Ishii, Y., Komatsu, N. et al. Growth rates and tolerance to low water temperatures of freshwater bacterioplankton strains: ecological insights from shallow hypereutrophic lakes in Japan. Hydrobiologia 792, 67–81 (2017). https://doi.org/10.1007/s10750-016-3045-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3045-7

Keywords

Navigation