Skip to main content

Advertisement

Log in

The response of Cladocerans to recent environmental forcing in an Alpine Lake on the SE Tibetan Plateau

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Global environmental change has affected aquatic ecosystems of the southeast Tibetan Plateau during the past 200 years, altering the composition and biomass of primary producers (e.g. algae). However, the response of primary consumers (e.g. cladocerans) to this recent environmental forcing is not well documented. Samples of cladoceran remains from sediment traps (1-year deployment), surface sediments covering a range of water depths and a short 22.5-cm sediment core were analysed in a small, remote alpine lake (Moon Lake) in Sichuan Province (SW China). Littoral forms, notably Chydorus sphaericus and Acroperus harpae, together with Daphnia pulex dominated the cladoceran community. Remains of these cladocerans were well represented in the sediment core assemblages as indicated by their relative abundance in the surface sample. There was a marked increase in the abundance of D. pulex and total cladoceran fluxes in the sediment core from ca. 1880 AD, coinciding with the changes in diatom assemblages and pigments. Analysis of the multi-proxy data (cladocerans, diatom, pigment, total organic carbon, C/N ratio, air temperature and atmospheric NO3 records) suggests that both direct and indirect climatic forcing, coupled with enhanced nutrient supply (e.g. NO3 deposition) effects on primary producers have changed cladoceran community dynamics in Moon Lake over the last ~200 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alric, B. & M. E. Perga, 2011. Effects of production, sedimentation and taphonomic processes on the composition and size structure of sedimenting cladoceran remains in a deep subalpine lake: paleo-ecological implications. Hydrobiologia 676: 101–116.

    Article  Google Scholar 

  • Alric, B., J. P. Jenny, V. Berthon, F. Arnaud, C. Pignol, J. L. Reyss, P. Sabatier & M. E. Perga, 2013. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94: 2767–2780.

    Article  PubMed  Google Scholar 

  • Amsinck, S. L., E. Jeppesen & D. Ryves, 2003. Cladoceran stratigraphy in two shallow brackish lakes with special reference to changes in salinity, macrophyte abundance and fish predation. Journal of Paleolimnology 29: 495–507.

    Article  Google Scholar 

  • Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments Volume 1: Basin Analysis, Coring and Chronological Techniques. Kluwer, Dordrecht: 171–203.

    Google Scholar 

  • Anderson, N. J., 1990. Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnology and Oceanography 35: 497–508.

    Article  Google Scholar 

  • Battarbee, R. W., J. A. Grytnes, R. Thompson, P. G. Appleby, J. Catalan, A. Korhola, H. J. B. Birks, E. Heegaard & A. Lami, 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology 28: 161–179.

    Article  Google Scholar 

  • Battarbee, R. W., M. Kernan & N. Rose, 2009. Threatened and stressed mountain lakes of Europe: assessment and progress. Aquatic Ecosystem Health & Management 12: 118–128.

    Article  CAS  Google Scholar 

  • Bergström, A. K. & M. Jansson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 635–643.

    Article  Google Scholar 

  • Blais, J. M. & J. Kalff, 1995. The influence of lake morphometry on sediment focusing. Limnology and Oceanography 40: 582–588.

    Article  CAS  Google Scholar 

  • Catalan, J., M. Ventura, A. Brancelj, I. Granados, H. Thies & U. Nickus, 2002. Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology 28: 25–46.

    Article  Google Scholar 

  • Catalan, J., M. G. Barbieri, F. Bartumeus, P. Bitušík, I. Botev, A. Brancelj, D. Cogălniceanu, M. Manca, A. Marchetto, N. Ognjanova-Rumenova, S. Pla, M. Rieradevall, S. Sorvari, E. Štefkova, E. Stuchli & M. Ventura, 2009. Ecological thresholds in European alpine lakes. Freshwater Biology 54: 2494–2517.

    Article  CAS  Google Scholar 

  • Catalan, J., S. Pla-Rabés, A. P. Wolfe, J. P. Smol, K. M. Rühland, N. J. Anderson, J. Kopáček, E. Stuchlík, R. Schmidt, K. A. Koinig, L. Camarero, R. J. Flower, O. Heiri, C. Kamenik, A. Korhola, P. R. Leavitt, R. Psenner & I. Renberg, 2013. Global change revealed by palaeolimnological records from remote lakes: a review. Journal of Paleolimnology 49: 513–535.

    Article  Google Scholar 

  • Chen, G., C. Dalton & D. Taylor, 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology 44: 465–481.

    Article  Google Scholar 

  • Chiang, S. C. & N. S. Du, 1979. Fauna Sinica, Crustacean: Freshwater Cladocera. Science Press, Academia Sinica, Beijing. (in Chinese).

    Google Scholar 

  • Demott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Ecology 63: 1949–1966.

    Article  Google Scholar 

  • Demott, W. R. & W. C. Kerfoot, 1982. Competition among cladocerans nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.

    Article  Google Scholar 

  • Dodson, S. I. & D. G. Frey, 2001. Cladocera and other branchiopoda. In Thorp, H. J. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates. Academic Press, London: 723–786.

    Google Scholar 

  • Eggermont, H. & K. Martens, 2011. Preface: cladoceran crustaceans: sentinels of environmental change. Hydrobiologia 676: 1–7.

    Article  Google Scholar 

  • Elser, J. J., T. Andersen, J. S. Baron, A. K. Bergström, M. Jansson, M. Kyle, K. R. Nydick, L. Steger & D. O. Hessen, 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835–837.

    Article  CAS  PubMed  Google Scholar 

  • Frey, D. G., 1986. Cladocera analysis. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 667–692.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, Cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.

    Google Scholar 

  • Gąsiorowski, M. & K. Szeroczyńska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite Lake (northern Poland). Hydrobiologia 526: 137–144.

    Article  Google Scholar 

  • George, D. G. & D. P. Hewitt, 2006. The impact of year-to-year changes in the weather on the dynamics of Daphnia in a thermally stratified lake. Aquatic Ecology 40: 33–47.

    Article  CAS  Google Scholar 

  • Grimm, E. C., 2011. TILIA software version 1.7.16. Illinois State Museum, Research and Collection Center. Springfield USA. Available: http://intra.museum.state.il.us/pub/grimm/tilia/.

  • Hofmann, W., 1987. Cladoceran in space and time: analysis of lake sediments. Hydrobiologia 145: 315–321.

    Article  Google Scholar 

  • Holtgrieve, G. W., D. E. Schindler, W. O. Hobbs, P. R. Leavitt, E. J. Ward, L. Bunting, G. Chen, B. P. Finney, I. Gregory-Eaves, S. Holmgren, M. J. Lisac, P. J. Lisi, K. Nydick, L. A. Rogers, J. E. Saros, D. T. Selbie, M. D. Shapley, P. B. Walsh & A. P. Wolfe, 2011. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334: 1545–1548.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z., N. J. Anderson, X. Yang & S. McGowan, 2014. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biology 20: 1614–1628.

    Article  PubMed  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes the role of nutrient state, submerged macrophytes and water depth. Hydrobiology 119: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., K. Christoffersen, F. Landkildehus, T. Lauridsen, S. L. Amsinck, F. Riget & M. Søndergaard, 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, T. L. Lauridsen, S. L. Amsinck, K. Christoffersen, M. Søndergaard & S. F. Mitchell, 2003. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491: 321–330.

    Article  Google Scholar 

  • Kamenik, C., K. Szeroczyńska & R. Schmidt, 2007. Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594: 33–46.

    Article  Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina Cladocera in a polyhumic lake. Freshwater Biology 19: 285–296.

    Article  Google Scholar 

  • Kattel, G. R., R. W. Battarbee, A. Mackay & H. J. B. Birks, 2007. Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology 38: 157–181.

    Article  Google Scholar 

  • Kattel, G. R., R. W. Battarbee, A. W. Mackay & H. J. B. Birks, 2008. Recent ecological change in a remote Scottish mountain loch: an evaluation of a Cladocera-based temperature transfer-function. Palaeogeography Palaeoclimatology Palaeoecology 259: 51–76.

    Article  Google Scholar 

  • Koinig, K. A., C. Kamenik, R. Schmidt, A. Agustí-Panareda, P. Appleby, A. Lami, M. Prazakova, N. Rose, Ø. A. Schnell, R. Tessadri, R. Thompson & R. Psenner, 2002. Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries–the influence of air temperature on biological parameters. Journal of Paleolimnology 28: 147–160.

    Article  Google Scholar 

  • Korhola, A., 1999. Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their potential in environmental reconstruction. Ecography 22: 357–373.

    Article  Google Scholar 

  • Korhola, A. & M. Rautio, 2001. Cladocera and other branchiopod crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking environmental change using lake sediments. Kluwer, Dordrecht: 5–41.

    Chapter  Google Scholar 

  • Kuang, X. Y., J. Liu, H. L. Wang & S. M. Wang, 2008. Inter-hemispheric comparison of climate change in the last millennium based on the ECHO-G simulation. Chinese Science Bulletin 53: 2692–2700.

    Google Scholar 

  • Larsen, C. P. S. & G. M. MacDonald, 1993. Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. Quaternary Science Reviews 12: 781–792.

    Article  Google Scholar 

  • Liang, E. Y., X. M. Shao & Y. Xu, 2009. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theoretical and Applied Climatology 98: 9–18.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps I. Climate. Journal of Paleolimnology 18: 395–420.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps II. Nutrients. Journal of Paleolimnology 19: 443–463.

    Article  Google Scholar 

  • Manca, M. & P. Comoli, 1995. Temporal variations of fossil Cladocera in the sediments of Lake Orta (N. Italy) over the last 400 years. Journal of Paleolimnology 14: 113–122.

    Article  Google Scholar 

  • Manca, M. & P. Comoli, 2004. Reconstructing long-term changes in Daphnia’s body size from subfossil remains in sediments of a small lake in the Himalayas. Journal of Paleolimnology 32: 95–107.

    Article  Google Scholar 

  • Neff, J. C., A. P. Ballantyne, G. L. Farmer, N. M. Mahowald, J. L. Conroy, C. C. Landry, J. T. Overpeck, T. H. Painetr, C. R. Lawrence & R. L. Reynolds, 2008. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geoscience 1: 189–195.

    Article  CAS  Google Scholar 

  • Nevalainen, L., T. P. Luoto, S. Kultti & K. Sarmaja-Korjonen, 2013. Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. Journal of Biogeography 40: 1548–1559.

    Article  Google Scholar 

  • Persson, J., M. T. Brett, T. Vrede & J. L. Ravet, 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116: 1152–1163.

    Article  Google Scholar 

  • Rühland, K., N. Phadtare, R. Pant, S. Sangode & J. Smol, 2006. Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophysical Research Letters 33: L15709.

    Article  Google Scholar 

  • Saros, J. E., K. C. Rose, D. W. Clow, V. C. Stephens, A. B. Nurse, H. A. Arnett, J. Stone, C. E. Williamson & A. P. Wolfe, 2010. Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environmental Science & Technology 44: 4891–4896.

    Article  CAS  Google Scholar 

  • Scholten, M. C. T., E. M. Foekema, H. P. Dokkum, N. H. B. M. Kaag & R. G. Jak, 2005. Daphnid grazing ecology. In Scholten, M. C., E. M. Foekema., H. P. V. Dokkum., N. H. B. M. Kaag & R. G. Jak (eds), Eutrophication Management and Ecotoxicology. Environmental Science. Springer, Berlin: 21–56.

    Chapter  Google Scholar 

  • Shao, X. & J. Fan, 1999. Past climate on west Sichuan Plateau as reconstructed from ring-widths of dragon spruce. Quaternary Sciences 1: 81–89. (in Chinese).

    Google Scholar 

  • Smol, J. P., A. P. Wolfe, H. J. B. Birks, M. S. Douglas, V. J. Jones, A. Korhola, R. Pienitzj, K. Rühlanda, S. Sorvarii, D. Antoniadesh, S. J. Brooksk, M. A. Falluj, M. Hughesg, B. E. Keatleya, T. E. Laingj, N. Micheluttia, L. Nazaroval, M. Nymani, A. M. Patersona, B. Perrenh, R. Quinlanh, M. Rautioi, E. Saulnier-Talbot, S. Siitoneni, N. Solovievag & J. Weckströmi, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102: 4397–4402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladoceran from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination. Version 4.5. Microcomputer Power, Ithaca, NY.

  • Thienpont, J. R., J. B. Korosi, E. S. Cheng, K. Deasley, M. F. J. Pisaric & J. P. Smol, 2015. Recent climate warming favours more specialized cladoceran taxa in western Canadian Arctic lakes. Journal of Biogeography 42: 1553–1565.

    Article  Google Scholar 

  • Thompson, L. G., T. Yao, E. Mosley-Thompson, M. E. Davis, K. A. Henderson & P. N. Lin, 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289: 1916–1919.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., X. Yang, P. Langdon & E. Zhang, 2011. Limnological responses to warming on the Xizang Plateau, Tibet, over the past 200 years. Journal of Paleolimnology 45: 257–271.

    Article  CAS  Google Scholar 

  • Weider, L. J., 1987. Life history variation among low-arctic clones of obligately parthenogenetic Daphnia pulex: a diploid-polyploid complex. Oecologia 73: 251–256.

    Article  Google Scholar 

  • Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal abundance and pattern of chydorid, Caldocera in mud and vegetative habitats. Ecology 59: 1177–1188.

    Article  Google Scholar 

  • Wischnewski, J., A. Kramer, Z. Kong, A. Mackay, G. Simpson, S. Mischke & U. Herzschuh, 2011. Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries. Global Change Biology 17: 3376–3391.

    Article  Google Scholar 

  • Wolfe, A. P., J. S. Baron & R. J. Cornett, 2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology 25: 1–7.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Yuxin Zhu, Weilan Xia, Shen Min, Dr. Suzanne McGowan and Dr. Qian Wang for providing the chemical, chronological, reconstructed temperature, and pigment data as well as field assistance. GK acknowledges the assistance of the Chinese Academy of Sciences for the CAS-PIFI Visiting Fellowship programme at NIGLAS; NJA acknowledges the support of the Chinese Academy of Sciences (Senior Visiting Professorship) and the Royal Society. This study was supported by the National Science Foundation of China (Grant No. 41272379, 41502170), the National Basic Research Program of China (Grant No. 2012CB956100), Nanjing Institute of Geography & Limnology, CAS (Grant No. NIGLAS2012135004) and the Jiangsu Collaborative Innovation Center for Climate Change. Finally, we would like to thank editors of Hydrobiologia, two anonymous reviewers, and B Alrcic (France), for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Yang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Research involved in animal and human participant

This research does not involve human participants and/or animals. All the co-authors agree with the submission of this paper to Hydrobiologia.

Additional information

Handling editor: Zhengwen Liu

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Yang, X., Kattel, G. et al. The response of Cladocerans to recent environmental forcing in an Alpine Lake on the SE Tibetan Plateau. Hydrobiologia 784, 171–185 (2017). https://doi.org/10.1007/s10750-016-2868-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2868-6

Keywords

Navigation