Skip to main content
Log in

Alteration of essential fatty acids in secondary consumers across a gradient of cyanobacteria

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cyanobacteria blooms pose an increasing threat to ecosystem services. Consequently, understanding their impacts on ecosystem function is important. Cyanobacteria are poor producers of long-chain essential fatty acids (LC-EFA; eicosapentaenoic, docosahexaenoic, and arachidonic acids) and are inadequate for primary consumer growth and reproduction. Higher-level consumers such as planktivorous fishes are hypothesized to be negatively impacted through disruption of LC-EFA availability and transfer up the food web. We tested this hypothesis by comparing fatty acids in yellow perch (Perca flavescens) and white perch (Morone americana) across a gradient of cyanobacteria densities spanning four sites in Lake Champlain and Shelburne Pond, Vermont, USA. Phytoplankton community composition and fatty acid content of seston and fish tissue (liver and muscle) were collected in June, August, and October 2013. Yellow perch liver and muscle tissue increased in percent composition of linoleic acid and α-linolenic acid and decreased in LC-EFA with increased cyanobacteria. Total EFA and arachidonic acid in white perch muscle were negatively related to cyanobacteria. White perch liver did not show any relationship between EFA and cyanobacteria. We conclude that both fish species experienced altered EFA coinciding with cyanobacteria blooms, consistent with disruption of LC-EFA transfer across multiple trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlgren, G., L. Lundstedt, M. Brett & C. Forsberg, 1990. Lipid-composition and food quality of some fresh-water phytoplankton for cladoceran zooplankters. Journal of Plankton Research 12: 809–818.

    Article  CAS  Google Scholar 

  • Ahlgren, G., I. B. Gustafsson & M. Boberg, 1992. Fatty acid content and chemical composition of freshwater microalgae. Journal of Phycology 28: 37–50.

    Article  CAS  Google Scholar 

  • Ahlgren, G., L. Sonesten, M. Boberg & L. Gustafsson, 1996. Fatty acid content of some freshwater fish in lakes of different trophic levels – a bottom up effect? Ecology of Freshwater Fish 5: 15–27.

    Article  Google Scholar 

  • Aitchison, J., 1986. The statistical analysis of compositional data. Chapman and Hall, London.

    Book  Google Scholar 

  • Bec, A., M. E. Perga, C. Desvilettes & G. Bourdier, 2010. How well can the fatty acid content of lake seston be predicted from its taxonomic composition? Freshwater Biology 55: 1958–1972.

    Article  CAS  Google Scholar 

  • Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57(1): 289–300.

    Google Scholar 

  • Bligh, E. G. & W. J. Dyer, 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Brett, M. T. & D. C. Müller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic food web processes. Freshwater Biology 38: 483–499.

    Article  CAS  Google Scholar 

  • Brookes, J. D. & C. Carey, 2011. Resilience to blooms. Science 334: 46–47.

    Article  CAS  PubMed  Google Scholar 

  • Budge, S. M., S. J. Iverson, W. D. Bowen & R. G. Ackman, 2002. Among and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf of St. Lawrence. Canadian Journal of Fisheries and aquatic sciences 59: 886–898.

    Article  CAS  Google Scholar 

  • Buskey, E. J., 2008. How does eutrophication affect the role of grazers in harmful algal bloom dynamics? Harmful Algae 8: 152–157.

    Article  CAS  Google Scholar 

  • Couture, S. C. & M. C. Watzin, 2008. Diet of invasive adult white perch (Morone americana) and their effects on the zooplankton community in Missisquoi Bay, Lake Champlain. Journal of Great Lakes Research 34: 485–494.

    Article  Google Scholar 

  • Christie, W. W., 1989. Gas chromatography and lipids, Vol. 39. Oily Press, Ayr: 37–38.

    Google Scholar 

  • Czesny, S. J., J. Rinchard, S. D. Hanson, J. M. Dettmers & K. Dabrowski, 2011. Fatty acid signatures of Lake Michigan prey fish and invertebrates: among-species differences and spatiotemporal variability. Canadian Journal of Fisheries and Aquatic Sciences 68: 1211–1230.

    Article  CAS  Google Scholar 

  • Demott, W. & D. C. Müller-Navarra, 1997. The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshwater Biology 38: 649–664.

    Article  CAS  Google Scholar 

  • Elliott, J. A., 2010. The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biology 16: 864–876.

    Article  Google Scholar 

  • Facey, D. E., J. E. Marsden, T. B. Mihuc & E. A. Howe, 2012. Lake Champlain 2010: a summary of recent research and monitoring initiatives. Journal of Great Lakes ResearchSupplement 38(Supplement 1): 1–5.

    Article  Google Scholar 

  • Ferber, L. R., S. N. Levine, A. Lini & G. P. Livingston, 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology 49: 690–708.

    Article  CAS  Google Scholar 

  • Galloway, A. W. & M. Winder, 2015. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS One 10(6): e0130053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gladyshev, M. I., N. N. Sushchik, A. A. Kolmakova, G. S. Kalachova, E. S. Kravchuk, E. A. Ivanova & O. N. Makhutova, 2007. Seasonal correlations of elemental and ω3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian Reservoir. Aquatic Ecology 41: 9–23.

    Article  CAS  Google Scholar 

  • Gladyshev, M. I., N. N. Sushchik, O. N. Makhutova, O. P. Dubovskaya, E. S. Kravchuk, G. S. Kalachova & E. B. Khromechek, 2010. Correlations between fatty acid composition of seston and zooplankton and effects of environmental parameters in a eutrophic Siberian reservoir. Limnologica 40: 343–357.

    Article  CAS  Google Scholar 

  • Graeb, B. D., J. M. Dettmers, D. H. Wahl & C. E. Cáceres, 2004. Fish size and prey availability affect growth, survival, prey selection, and foraging behavior of larval yellow perch. Transactions of the American Fisheries Society 133: 504–514.

    Article  Google Scholar 

  • Happel, A., S. Creque, J. Rinchard, T. Höök, H. Bootsma, J. Janssen, D. Jude & S. Czesny, 2015. Exploring yellow perch diets in Lake Michigan through stomach content, fatty acids, and stable isotope ratios. Journal of Great Lakes Research. doi:10.1016/j.jglr.2015.03.025.

    Google Scholar 

  • Jöhnk, K. D., J. Huisman, J. Sharples, B. Sommeijer, P. M. Visser & J. M. Stroom, 2008. Summer heat waves promote blooms of harmful cyanobacteria. Global Change Biology 14: 495–512.

    Article  Google Scholar 

  • Keast, A., 1977. Diet overlaps and feeding relationships between the year classes in the yellow perch (Perca flavescens). Environmental Biology of Fishes 2: 53–70.

    Article  Google Scholar 

  • Lane, R. L., J. T. Trushenski & C. C. Kohler, 2006. Modification of fillet composition and evidence of differential fatty acid turnover in sunshine bass Morone chrysops × M. saxatilis following change in dietary lipid source. Lipids 41: 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  • Léveillé, J. C., C. Amblard & G. Bourdier, 1997. Fatty acids as specific algal markers in a natural lacustrian phytoplankton. Journal of Plankton Research 19: 469–490.

    Article  Google Scholar 

  • Limburg, K. E., M. L. Pace, D. Fischer & K. K. Arend, 1997. Consumption, selectivity, and use of zooplankton by larval striped bass and white perch in a seasonally pulsed estuary. Transactions of the American Fisheries Society 126: 607–621.

    Article  Google Scholar 

  • Los, D. A. & K. S. Mironov, 2015. Modes of fatty acid saturation in cyanobacteria: an update. Life 5: 554–567.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsden, J. E. & M. Hauser, 2009. Exotic species in Lake Champlain. Journal of Great Lakes Research 35: 250–265.

    Article  Google Scholar 

  • Martin-Creuzburg, D., E. von Elert & K. H. Hoffmann, 2008. Nutritional constraints at the cyanobacteria–Daphnia magna interface: the role of sterols. Limnology and Oceanography 53: 456–468.

    Article  Google Scholar 

  • Mjoun, K., K. A. Rosentrater & M. L. Brown, 2012. Culture performance and tissue fatty acid compositions of yellow perch (Perca flavescens) fed different dietary lipids. Aquaculture 360: 17–24.

    Article  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.

    Article  PubMed  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita & C. R. Goldman, 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.

    Article  PubMed  Google Scholar 

  • Nematipour, G. R. & D. M. Gatlin 3rd, 1993. Requirement of hybrid striped bass for dietary (n-3) highly unsaturated fatty acids. The Journal of Nutrition 123: 744–753.

    CAS  PubMed  Google Scholar 

  • Nuernberg, K., D. Dannenberger, K. Ender & G. Nuernberg, 2007. Comparison of different methylation methods for the analysis of conjugated linoleic acid isomers by silver ion HPLC in beef lipids. Journal of Agricultural and Food Chemistry 55: 598–602.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J. G.F Blanchet, R. Kindt, P Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H.Wagner (2016). vegan: Community Ecology Package. R package version 2.3-3. http://CRAN.R-project.org/package=vegan.

  • O’Neil, J., T. W. Davis, M. A. Burford & C. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Climate – blooms like it hot. Science 320: 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Perga, M. E., A. Bec & O. Anneville, 2009. Origins of carbon sustaining the growth of whitefish Coregonus lavaretus early larval states in Lake Annecy: insights from fatty–acid biomarkers. Journal of Fish Biology 74: 2–17.

    Article  PubMed  Google Scholar 

  • Perga, M. E., I. Domaizon, J. Guillard, V. Hamelet & O. Anneville, 2013. Are cyanobacterial blooms trophic dead ends? Oecologia 172: 551–562.

    Article  PubMed  Google Scholar 

  • R Development Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ravet, J. L., M. T. Brett & G. B. Arhonditsis, 2010. The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. Ecology 91: 180–190.

    Article  PubMed  Google Scholar 

  • Sargent, J., J. Bell, M. Bell, R. Henderson & D. Tocher, 1993. The metabolism of phospholipids and polyunsaturated fatty acids in fish. Coastal and Estuarine Studies 43: 103–124.

    Article  Google Scholar 

  • Sargent, J., L. McEvoy, A. Estevez, G. Bell, M. Bell, J. Henderson & D. Tocher, 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179: 217–229.

    Article  CAS  Google Scholar 

  • Smeltzer, E., A. D. Shambaugh & P. Stangel, 2012. Environmental change in Lake Champlain revealed by long-term monitoring. Journal of Great Lakes Research 38: 6–18.

    Article  CAS  Google Scholar 

  • Strandberg, U., S. J. Taipale, M. Hiltunen, A. W. E. Galloway, M. T. Brett & P. Kankaala, 2015. Inferring phytoplankton composition with a fatty acid modeling. Ecosphere 6: 1–18.

    Article  Google Scholar 

  • Tidwell, J. H., S. D. Coyle, J. Evans, C. Weibel, J. McKinney, K. Dodson & H. Jones, 1999. Effect of culture temperature on growth, survival, and biochemical composition of yellow perch Perca fiavescens. Journal of the World Aquaculture Society 30: 324–330.

    Article  Google Scholar 

  • Tocher, D. R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research 41: 717–732.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen phytoplankton: methodik. Mitteilungen der internationale Vereinigung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vanni, M. J. & D. L. Findlay, 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 921–937.

    Article  Google Scholar 

  • Vermont Department of Environmental Conservation (VTDEC) and New York State Department of Environmental Conservation (NYDEC). 2013. Long-term water quality and biological monitoring project for Lake Champlain Quality Assurance Project Plan. Grand Isle, Vermont. Available from http://www.watershedmanage-ment.vt.gov/lakes/htm/lp_longterm.htm.

  • Xu, X. & P. Kestemont, 2002. Lipid metabolism and FA composition in tissues of Eurasian perch Perca fluviatilis as influenced by dietary fats. Lipids 37: 297–304.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, R. G., 2012. Lipids in freshwater ecosystems. In Arts, M. T. & B. C. Wainmann (eds). Springer Science & Business Media.

Download references

Acknowledgments

Fish samples were collected in accordance with University of Vermont Institutional Animal Care and Use Committee guidelines (IACUC 13-051). We thank Melissa Bainbridge, Katie Bryan, Emily Berry, and Nora Hill for their assistance with sample collection and preparation. We would like to thank Captain Steve Cluett of the RV Melosira for always going the extra step and to make sure sample collections were as successful as possible. Support provided by Vermont EPSCoR with funds from the National Science Foundation (NSF) Grant EPS-1101317, a NSF Research Experiences for Undergraduates award to EN (Award DBI-1358838), and a University of Vermont Office of Undergraduate Research Summer Mini-Grant to KR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Stockwell.

Additional information

Handling editor: Luigi Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gearhart, T.A., Ritchie, K., Nathan, E. et al. Alteration of essential fatty acids in secondary consumers across a gradient of cyanobacteria. Hydrobiologia 784, 155–170 (2017). https://doi.org/10.1007/s10750-016-2864-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2864-x

Keywords

Navigation