Skip to main content
Log in

Can increased structural complexity decrease the predation of an alien crayfish on a native fish?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Interactions between predators and their prey are influenced by the habitats they occupy. In freshwater ecosystems, submerged vegetation provides protection for prey compared to unvegetated substrata. Using submerged plants (Hydrilla verticillata) as a refuge for Chinese bitterling (Rhodeus sinensis), a native fish, we conducted a series of laboratory experiments to test the impact of structural complexity and prey density on predation rate. We found that the number of Chinese bitterling eaten by alien crayfish (Procambarus clarkii) decreased with the increasing structural complexity and increased with prey density. Similar reductions in predation rate with increased habitat complexity occurred at all three different prey densities. Our study indicates that structural complexity can decrease the crayfish predation on freshwater fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, A. J., J. V. Locascio & B. D. Robbins, 2004. Microhabitat use by a post-settlement stage estuarine fish: evidence from relative abundance and predation among habitats. Journal of Experimental Marine Biology and Ecology 299: 17–33.

    Article  Google Scholar 

  • Allendorf, F. W. & L. L. Lundquist, 2003. Introduction: population biology, evolution, and control of invasive species. Conservation Biology 17: 24–30.

    Article  Google Scholar 

  • Baber, M. J., K. J. Babbitt & M. E. Douglas, 2004. Influence of habitat complexity on predator–prey interactions between the fish (Gambusia holbrooki) and tadpoles of Hyla squirella and Gastrophryne carolinensis. Copeia 2004: 173–177.

    Article  Google Scholar 

  • Bartholomew, A., 2012. Space size relative to prey width and total cover in an area both influence the habitat choices of freshwater angelfish Pterophyllum scalare in mesocosms. Marine and Freshwater Behaviour and Physiology 45: 29–43.

    Article  Google Scholar 

  • Beauchamp, D. A., C. M. Baldwin, J. L. Vogel & C. P. Gubala, 1999. Estimating diel, depth-specific foraging opportunities with a visual encounter rate model for pelagic piscivores. Canadian Journal of Fisheries and Aquatic Sciences 56: 128–139.

    Article  Google Scholar 

  • Cai, F., Z. Wu, N. He, L. Ning & C. Huang, 2010. Research progress in invasion ecology of Procambarus clarkii. Chinese Journal of Ecology 29: 124–132.

    Google Scholar 

  • Clavero, M. & E. García-Berthou, 2005. Invasive species are a leading cause of animal extinctions. Trends in Ecology and Evolution 20: 110.

    Article  PubMed  Google Scholar 

  • Cox, J. G. & S. L. Lima, 2006. Naivete and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends in Ecology & Evolution 21: 674–680.

    Article  Google Scholar 

  • Finke, D. L. & R. F. Denno, 2002. Intraguild predation diminished in complex structured vegetation: implications for prey suppression. Ecology 83: 643–652.

    Article  Google Scholar 

  • Forrester, G. E. & M. A. Steele, 2004. Predators, prey refuges, and the spatial scaling of density-dependent prey mortality. Ecology 85: 1332–1342.

    Article  Google Scholar 

  • Gazdewich, K. J. & D. P. Chivers, 2002. Acquired predator recognition by fathead minnows: influence of habitat characteristics on survival. Journal of Chemical Ecology 28: 439–445.

    Article  CAS  PubMed  Google Scholar 

  • Gil-Sánchez, J. & J. Alba-Tercedor, 2006. The decline of the endangered populations of the native freshwater crayfish (Austropotamobius pallipes) in Southern Spain: it is possible to avoid extinction? Hydrobiologia 559: 113–122.

    Article  Google Scholar 

  • Grabowski, J. H., 2004. Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology 85: 995–1004.

    Article  Google Scholar 

  • Guo, X. & S. Zhu, 1997. A preliminary study on the larval development of the crayfish Procambarus clarkii. Acta Zoologica Sinica 16: 150–155.

    Google Scholar 

  • Hernández, L., A. M. Maeda-Martínez, G. Ruiz-Campos, G. Rodríguez-Almaraz, F. Alonzo-Rojo & J. C. Sainz, 2007. Geographic expansion of the invasive red crayfish Procambarus clarkii (Girard, 1852) (Crustacea: Decapoda) in Mexico. Biological Invasions 10: 977–984.

    Article  Google Scholar 

  • Hill, J. M. & M. J. Weissburg, 2013. Habitat complexity and predator size mediate interactions between intraguild blue crab predators and mud crab prey in oyster reefs. Marine Ecology Progress Series 488: 209–219.

    Article  Google Scholar 

  • Hovel, K. A., A. M. Warneke, S. P. Virtue-Hilborn & A. E. Sanchez, 2016. Mesopredator foraging success in eelgrass (Zostera marina L.): relative effects of epiphytes, shoot density, and prey abundance. Journal of Experimental Marine Biology and Ecology 474: 142–147.

    Article  Google Scholar 

  • Humphries, A. T., M. K. La Peyre & G. A. Decossas, 2011. The effect of structural complexity, prey density, and “predator-free space” on prey survivorship at created oyster reef mesocosms. PloS One 6: e28339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannou, C. C., G. D. Ruxton & J. Krause, 2008. Search rate, attack probability, and the relationship between prey density and prey encounter rate. Behavioral Ecology 19: 842–846.

    Article  Google Scholar 

  • Jana, D. & N. Bairagi, 2014. Habitat complexity, dispersal and metapopulations: macroscopic study of a predator-prey system. Ecological Complexity 17: 131–139.

    Article  Google Scholar 

  • Johnson, D. W., 2006. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes. Ecology 87: 1179–1188.

    Article  PubMed  Google Scholar 

  • Macia, A., K. G. S. Abrantes & J. Paula, 2003. Thorn fish Terapon jarbua (Forskål) predation on juvenile white shrimp Penaeus indicus H. Milne Edwards and brown shrimp Metapenaeus monoceros (Fabricius): the effect of turbidity, prey density, substrate type and pneumatophore density. Journal of Experimental Marine Biology and Ecology 291: 29–56.

    Article  Google Scholar 

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout & F. A. Bazzaz, 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689–710.

    Article  Google Scholar 

  • Manatunge, J., T. Asaeda & T. Priyadarshana, 2000. The influence of structural complexity on fish–zooplankton interactions: a study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425–438.

    Article  Google Scholar 

  • Michel, M. J. & M. M. Adams, 2009. Differential effects of structural complexity on predator foraging behavior. Behavioral Ecology 20: 313–317.

    Article  Google Scholar 

  • Ni, Y. & H. L. Wu, 2006. Fishes of Jiangsu Province. China Agriculture Press, Beijing.

    Google Scholar 

  • Pimentel, D., S. McNair, J. Janecka, J. Wightman, C. Simmonds, C. O’Connell, E. Wong, L. Russel, J. Zern, T. Aquino & T. Tsomondo, 2001. Economic and environmental threats of alien plant, animal, and microbe invasions. Agriculture Ecosystems & Environment 84: 1–20.

    Article  Google Scholar 

  • Pimentel, D., R. Zuniga & D. Morrison, 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273–288.

    Article  Google Scholar 

  • Posey, M. H., C. Wigand & J. C. Stevenson, 1993. Effects of an introduced aquatic plant, Hydrilla verticillata, on benthic communities in the upper Chesapeake Bay. Estuarine, Coastal and Shelf Science 37: 539–555.

    Article  Google Scholar 

  • Ray-Culp, M., M. Davis & A. W. Stoner, 1999. Predation by xanthid crabs on early post-settlement gastropods: the role of prey size, prey density, and habitat complexity. Journal of Experimental Marine Biology and Ecology 240: 303–321.

    Article  Google Scholar 

  • Renai, B. & F. Gherardi, 2004. Predatory efficiency of crayfish: comparison between indigenous and non-indigenous species. Biological Invasions 6: 89–99.

    Article  Google Scholar 

  • Ricciardi, A., R. J. Neves & J. B. Rasmussen, 1998. Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology 67: 613–619.

    Article  Google Scholar 

  • Rodda, G. H., T. H. Fritts & D. Chiszar, 1997. The disappearance of Guam’s wildlife—new insights for herpetology, evolutionary ecology, and conservation. BioScience 47: 565–574.

    Article  Google Scholar 

  • Schneider, K. & K. Winemiller, 2008. Structural complexity of woody debris patches influences fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia 610: 235–244.

    Article  Google Scholar 

  • Seitz, R. D., R. N. Lipcius, A. H. Hines & D. B. Eggleston, 2001. Density-dependent predation, habitat variation, and the persistence of marine bivalve prey. Ecology 82: 2435–2451.

    Article  Google Scholar 

  • Stoner, A. W., 2009. Habitat-mediated survival of newly settled red king crab in the presence of a predatory fish: role of habitat complexity and heterogeneity. Journal of Experimental Marine Biology and Ecology 382: 54–60.

    Article  Google Scholar 

  • Stuart-Smith, R., R. White & L. Barmuta, 2008. A shift in the habitat use pattern of a lentic galaxiid fish: an acute behavioural response to an introduced predator. Environmental Biology of Fishes 82: 93–100.

    Article  Google Scholar 

  • Turesson, H. & C. Brönmark, 2007. Predator–prey encounter rates in freshwater piscivores: effects of prey density and water transparency. Oecologia 153: 281–290.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Walker, B. & W. Steffen, 1997. An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation Ecology 1: 1–17.

    Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    Article  PubMed  Google Scholar 

  • Wijgerde, T., S. Jurriaans, M. Hoofd, J. A. J. Verreth & R. Osinga, 2012. Oxygen and heterotrophy affect calcification of the scleractinian coral Galaxea fascicularis. PloS One 7: e52702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis, S., K. Winemiller & H. Lopez-Fernandez, 2005. Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142: 284–295.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of Guangxi Province (2011GXNSFE018005), Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University. We thank Ms. Diane Yoshimi from Woodland Park Zoo, Seattle, Washington, USA for English language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: John Havel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zheng, X., Wu, Z. et al. Can increased structural complexity decrease the predation of an alien crayfish on a native fish?. Hydrobiologia 781, 191–197 (2016). https://doi.org/10.1007/s10750-016-2844-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2844-1

Keywords

Navigation