Skip to main content

Advertisement

Log in

Does habitat restoration enhance spring biodiversity and ecosystem functions?

  • Small Water Bodies
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Degradation of groundwater-dependent ecosystems has raised a need for their restoration, but ecological responses to restoration are largely unknown. We evaluated the effectiveness of spring restoration using data from near-natural, restored, and human-impacted springs, the major impact being degradation of spring hydrology by forest drainage. We used both taxonomic (bryophytes, macroinvertebrates, and leaf-decomposing fungi) and functional (leaf breakdown) measures of restoration success. We expected that by reducing surface water input, restoration will improve spring hydrology and place spring ecosystems in a trajectory towards more natural conditions. Restored springs were thermally more stable than impacted springs and the contribution of surface water was greatly reduced. Bryophytes were more abundant in restored than in impacted springs but did not differ among restored and natural springs. Similarly, macroinvertebrate communities differed between restored and impacted springs whereas no difference was detected between restored and natural sites. Species diversity and functional attributes showed weaker responses to restoration. Our results suggest that restoration enhances spring habitat quality, and the first signs of biodiversity enhancement were also detectable only a few years post-restoration. Restoration clearly bears great promise as a conservation tool for the protection of this valuable component of regional freshwater biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Astorga, A., J. Oksanen, M. Luoto, J. Soininen, R. Virtanen & T. Muotka, 2012. Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules? Global Ecology and Biogeography 21: 365–375.

    Article  Google Scholar 

  • Barquín, J. & M. Scarsbrook, 2008. Management and conservation strategies for coldwater springs. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 580–591.

    Article  Google Scholar 

  • Baschien, C., C. K.-M. Tsui, V. Gulis, U. Szewzyk & L. Marvanova, 2013. The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biology 117: 660–672.

    Article  PubMed  Google Scholar 

  • Beauchamp, V. B., J. C. Stromberg & J. C. Stutz, 2006. Arbuscular mycorrhizal fungi associated with PopulusSalix stands in a semi-arid riparian ecosystem. New Phytologist 170: 369–380.

    Article  PubMed  Google Scholar 

  • Benfield, E. F., 1996. Leaf breakdown in stream ecosystems. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic, San Diego: 579–589.

    Google Scholar 

  • Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.

    Article  Google Scholar 

  • Cantonati, M., L. Füreder, R. Gerecke, I. Jüttner & E. J. Cox, 2012. Crenic habitats, hotpots for freshwater biodiversity conservation: toward an understanding of their ecology. Freshwater Science 31: 463–480.

    Article  Google Scholar 

  • Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. Gonzalez Peña, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld & R. Knight, 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Céréghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.

    Article  Google Scholar 

  • Chauvet, E., J. Cornut, K. R. Sridhar, M. A. Selosse & F. Bärlocher, 2015. Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecology 19: 112–127.

    Article  Google Scholar 

  • Chuzhekova, T. A., 2015. Dynamics of macrozoobenthos structure in urban spring brooks of the Middle Volga Basin. Inland Water Biology 3: 259–268.

    Article  Google Scholar 

  • Clark, I. D. & P. Fritz, 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York.

    Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Edgar, R. C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Eurola, S., S. Hicks & E. Kaakinen, 1984. Key to Finnish mire types. In Moore, P. D. (ed.), European Mires. Academic, London: 11–117.

    Chapter  Google Scholar 

  • European Commission, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327: 1–72.

    Google Scholar 

  • Gardes, M. & T. D. Bruns, 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Gat, J. R., 2010. Isotope Hydrology: A Study of the Water Cycle. Imperial College Press, London.

    Book  Google Scholar 

  • Gessner, M. O., 2005. Ergosterol as a measure of fungal biomass. In Methods to Study Litter Decomposition. Springer, Dordrecht: 189–195.

  • Haapalehto, T. O., H. Vasander, S. Jauhiainen, T. Tahvainen & J. S. Kotiaho, 2011. The effects of peatland restoration on water-table depth, elemental concentrations and vegetation: 10 years of changes. Restoration Ecology 19: 587–598.

    Article  Google Scholar 

  • Hasselquist, E. M., C. Nilsson, J. Hjältén, D. Jørgensen, L. Lind & L. E. Polvi, 2015. Time for recovery of riparian plants in restored northern Swedish streams: a chronosequence study. Ecological Applications 25: 1373–1389.

    Article  PubMed  Google Scholar 

  • Heino, J., R. Virtanen, K.-M. Vuori, J. Saastamoinen, A. Ohtonen & T. Muotka, 2005. Spring bryophytes in forested landscapes: land use effects on bryophyte species richness, community structure and persistence. Biological Conservation 124: 539–545.

    Article  Google Scholar 

  • Holden, J., P. J. Chapman & J. C. Labadz, 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography 28: 95–123.

    Article  Google Scholar 

  • Ilmonen, J. & L. Paasivirta, 2005. Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: patterns in abundance and diversity. Hydrobiologia 533: 99–113.

    Article  Google Scholar 

  • Ilmonen, J., L. Paasivirta, R. Virtanen & T. Muotka, 2009. Regional and local drivers of macroinvertebrate assemblages in boreal springs. Journal of Biogeography 36: 822–834.

    Article  Google Scholar 

  • Ilmonen, J., H. Mykrä, R. Virtanen, L. Paasivirta & T. Muotka, 2012. Responses of spring macroinvertebrate and bryophyte communities to habitat modification: community composition, species richness and red-listed species. Freshwater Science 31: 657–667.

    Article  Google Scholar 

  • Ilmonen, J., R. Virtanen, L. Paasivirta & T. Muotka, 2013. Detecting restoration impacts in inter-connected habitats: spring invertebrate communities in a restored wetland. Ecological Indicators 30: 165–169.

    Article  Google Scholar 

  • Jabiol, J., A. Bruder, M. O. Gessner, M. Makkonen, B. G. McKie, E. T. H. M. Peeters, V. C. A. Vos & E. Chauvet, 2013. Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecology 6: 439–448.

    Article  Google Scholar 

  • Jackson, D. A., 1993. Stopping rules in Principal Components Analysis: a comparison of heuristical and statistical approaches. Ecology 74: 2204–2214.

    Article  Google Scholar 

  • Juutinen, R., 2011. The decrease of rich fen bryophytes in springs as a consequence of large-scale environmental loss. A 50-year re-sampling study. Lindbergia 34: 2–8.

    Google Scholar 

  • Jyväsjärvi, J., H. Suurkuukka, R. Virtanen, J. Aroviita & T. Muotka, 2014. Does the taxonomic completeness of headwater stream assemblages reflect the conservation status of the riparian forest? Forest Ecology and Management 334: 293–300.

    Article  Google Scholar 

  • Jyväsjärvi, J., H. Marttila, P. M. Rossi, P. Ala-Aho, B. Olofsson, J. Nisel, B. Backman, J. Ilmonen, R. Virtanen, L. Paasivirta, R. Britschgi, B. Kløve & T. Muotka, 2015. Climate-induced warming imposes a threat to North European spring ecosystems. Global Change Biology 21: 4561–4569.

    Article  PubMed  Google Scholar 

  • Kappes, H., A. Sundermann & P. Haase, 2010. High spatial variability biases the space-for-time approach in environmental monitoring. Ecological Indicators 10: 1202–1205.

    Article  Google Scholar 

  • Kristensen, P. & L. Globevnik, 2014. European small water bodies. In Biology and Environment: Proceedings of the Royal Irish Academy 114. Royal Irish Academy: 281–287.

  • Lepori, F., D. Palm, E. Brännäs & B. Malmqvist, 2005. Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecological Applications 15: 2060–2071.

    Article  Google Scholar 

  • Liepina, L., 2012. Occurrence of fungal structures in bryophytes of the boreo-nemoral zone. Environmental and Experimental Biology 10: 35–40.

    Google Scholar 

  • Mäkelä, K., 1972. Some aquatic hyphomycetes on grasses in Finland. Karstenia 13: 16–22.

    Google Scholar 

  • National Board of Waters, 1981. The Analytical Methods Used by National Board of Waters. Report 213. National Broad of Waters, Helsinki.

  • Nylund, J. E. & H. Wallander, 1992. Ergosterol analysis as a means of quantifying mycorrhizal biomass. Methods in Microbiology 24: 77–88.

    Article  CAS  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2015. Vegan: Community Ecology Package Version 2.3-0 [available on internet at http://cran.r-project.org/web/packages/vegan/vegan.pdf].

  • Palmer, M. A., K. L. Hondula & B. J. Koch, 2014. Ecological restoration of streams and rivers: shifting strategies and shifting goals. Annual Review of Ecology, Evolution and Systematics 45: 247–269.

    Article  Google Scholar 

  • Pykälä, J., 2007. Implementation of Forest act habitats in Finland: Does it protect the right habitats for threatened species? Forest Ecology and Management 242: 281–287.

    Article  Google Scholar 

  • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ruiz-González, C., J. P. Niño-García & P. A. Del Giorgio, 2015. Terrestrial origin of bacterial communities in complex networks. Ecology Letters 18: 1198–1206.

    Article  Google Scholar 

  • Tolkkinen, M., H. Mykrä, A.-M. Markkola, H. Aisala, K.-M. Vuori, J. Lumme, A.-M. Pirttilä & T. Muotka, 2013. Decomposer communities in human-impacted streams: species dominance rather than richness affects leaf decomposition. Journal of Applied Ecology 50: 1142–1151.

    CAS  Google Scholar 

  • Tolkkinen, M., H. Mykrä, M. Annala, A. M. Markkola, K.-M. Vuori & T. Muotka, 2015. Multi-stressor impacts on fungal diversity and ecosystem functions in streams: natural vs. anthropogenic stress. Ecology 96: 672–683.

    Article  CAS  PubMed  Google Scholar 

  • Turunen, J., T. Muotka, K.-M. Vuori, S. M. Karjalainen, J. Rääpysjärvi, T. Sutela & J. Aroviita, 2016. Disentangling the responses of boreal stream assemblages to low stressor levels of diffuse pollution and altered channel morphology. Science of the Total Environment 544: 954–962.

    Article  CAS  PubMed  Google Scholar 

  • Ulvinen, T., K. Syrjänen & S. Anttila, 2002. Bryophytes in Finland: distribution, ecology and red list status. Finnish Environment Institute, Helsinki.

    Google Scholar 

  • Underwood, A. J., 1994. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications 4: 3–15.

    Article  Google Scholar 

  • von Fumetti, S., P. Nagel, N. Scheifhacken & B. Baltes, 2006. Factors governing macrozoobenthic assemblages in perennial springs in north-eastern Switzerland. Hydrobiologia 568: 467–475.

    Article  Google Scholar 

  • Vuori, K.-M., I. Joensuu, J. Latvala, E. Jutila & A. Ahvonen, 1998. Forest drainage: a threat to benthic biodiversity of boreal headwater streams? Aquatic Conservation: Marine and Freshwater Ecosystems 8: 745–759.

    Article  Google Scholar 

  • Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.

    Article  Google Scholar 

  • Wieçek, M., P. Martin & A. Lipinski, 2013. Water mites as potential long-term bioindicators in formerly drained and rewetted raised bogs. Ecological Indicators 34: 332–335.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Elina Isokangas for assistance in the field and with the SI data, and Leevi Heikura and Antti Leinonen for helping us select the study sites. We also thank Peggy Lommatzsch for her assistance in the field, Marko Suokas for his help in bioinformatics, and Lauri Paasivirta for checking our chironomid identifications. Finally, we acknowledge the two anonymous referees for their helpful and constructive comments on the previous draft of the manuscript. The study was supported by Maj and Tor Nessling Foundation (Project Number 201500223), University of Oulu (Thule Institute), and Academy of Finland (AKVA Program, Project Number 128377).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaisa Lehosmaa.

Additional information

Guest editors: Mary Kelly-Quinn, Jeremy Biggs & Stefanie von Fumetti / The Importance of Small Water Bodies: Insights from Research

Electronic supplementary material

Online Resource 1. Photos of natural (a), restored (b), and human-impacted (c) springs

Online Resource 2. Bryophyte 606 and macroinvertebrate taxa list of studied springs (n = 23)

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 235358 kb)

Supplementary material 2 (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehosmaa, K., Jyväsjärvi, J., Virtanen, R. et al. Does habitat restoration enhance spring biodiversity and ecosystem functions?. Hydrobiologia 793, 161–173 (2017). https://doi.org/10.1007/s10750-016-2760-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2760-4

Keywords

Navigation