Skip to main content
Log in

Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy

Hydrobiologia Aims and scope Submit manuscript

Abstract

Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appeltans, W., S. T. Ahyong, G. Anderson, M. V. Angel, T. Artois, N. Bailly, R. Bamber, A. Barber, I. Bartsch, A. Berta, M. Błażewicz-Paszkowycz, P. Bock, G. Boxshall, C. B. Boyko, S. Nunes Brandao, R. A. Bray, N. L. Bruce, S. D. Cairns, T.-Y. Chan, L. Cheng, A. G. Collins, T. Cribb, M. Curini-Galletti, F. Dahdouh-Guebas, P. J. F. Davie, M. N. Dawson, O. De Clerck, W. Decock, S. De Grave, N. J. de Voogd, D. P. Domning, C. C. Emig, C. Erséus, W. Eschmeyer, K. Fauchald, D. G. Fautin, S. W. Feist, C. H. J. M. Fransen, H. Furuya, O. Garcia-Alvarez, S. Gerken, D. Gibson, A. Gittenberger, S. Gofas, L. Gómez-Daglio, D. P. Gordon, M. D. Guiry, F. Hernandez, B. W. Hoeksema, R. R. Hopcroft, D. Jaume, P. Kirk, N. Koedam, S. Koenemann, J. B. Kolb, R. M. Kristensen, A. Kroh, G. Lambert, D. B. Lazarus, R. Lemaitre, M. Longshaw, J. Lowry, E. Macpherson, L. P. Madin, C. Mah, G. Mapstone, P. A. McLaughlin, J. Mees, K. Meland, C. G. Messing, C. E. Mills, T. N. Molodtsova, R. Mooi, B. Neuhaus, P. K. L. Ng, C. Nielsen, J. Norenburg, D. M. Opresko, M. Osawa, G. Paulay, W. Perrin, J. F. Pilger, G. C. B. Poore, P. Pugh, G. B. Read, J. D. Reimer, M. Rius, R. M. Rocha, J. I. Saiz-Salinas, V. Scarabino, B. Schierwater, A. Schmidt-Rhaesa, K. E. Schnabel, M. Schotte, P. Schuchert, E. Schwabe, H. Segers, C. Self-Sullivan, N. Shenkar, V. Siegel, W. Sterrer, S. Stöhr, B. Swalla, M. L. Tasker, E. V. Thuesen, T. Timm, M. A. Todaro, X. Turon, S. Tyler, P. Uetz, J. van der Land, B. Vanhoorne, L. P. van Ofwegen, R. W. M. van Soest, J. Vanaverbeke, G. Walker-Smith, T. C. Walter, A. Warren, G. C. Williams, S. P. Wilson & M. J. Costello, 2012. The magnitude of global marine species diversity. Current Biology 22: 2189–2202.

    Article  CAS  PubMed  Google Scholar 

  • Alcántara-Rodríguez, J. A., J. Ciros-Pérez, E. Ortega-Mayagoitia, C. R. Serranía-Soto & E. Piedra-Ibarra, 2012. Local adaptation in populations of a Brachionus group plicatilis cryptic species inhabiting three deep crater lakes in Central Mexico. Freshwater Biology 57: 728–740.

    Article  Google Scholar 

  • Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. Ng, R. Meier, K. Winker, K. K. Ingram & I. Das, 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148–155.

    Article  PubMed  Google Scholar 

  • Blomberg, S. P., T. Garland Jr & A. R. Ives, 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57: 717–745.

    Article  PubMed  Google Scholar 

  • Brummitt, R. K. 2001. World Geographical Scheme for Recording Plant Distributions, 2 edn. International Working Group on Taxonomic Databases For Plant Sciences (TDWG).

  • Butlin, R., J. Bridle & D. Schluter, 2009. Speciation and Patterns of Diversity. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Campillo, S., E. M. García-Roger, D. Martínez-Torres & M. Serra, 2005. Morphological stasis of two species belonging to the L-morphotype in the Brachionus plicatilis species complex. Hydrobiologia 546: 181–187.

    Article  Google Scholar 

  • Campillo, S., E. M. García-Roger, M. J. Carmona, A. Gómez & M. Serra, 2009. Selection on life-history traits and genetic population divergence in rotifers. Journal of Evolutionary Biology 22: 2542–2553.

    Article  CAS  PubMed  Google Scholar 

  • Carmona, M. J., N. Dimas-Flores, E. M. García-Roger & M. Serra, 2009. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology 22: 1975–1983.

    Article  CAS  PubMed  Google Scholar 

  • Charin, N. N., 1947. O novom vide kolovratki is roda Brachionus. Doklady Akademii Nauk SSSR 56: 107–108.

    Google Scholar 

  • Ciros-Pérez, J., A. Gómez & M. Serra, 2001a. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23: 1311–1328.

    Article  Google Scholar 

  • Ciros-Pérez, J., M. J. Carmona & M. Serra, 2001b. Resource competition between sympatric sibling rotifer species. Limnology and Oceanography 46: 1511–1523.

    Article  Google Scholar 

  • Ciros-Pérez, J., M. J. Carmona, S. Lapesa & M. Serra, 2004. Predation as a factor mediating resource competition among rotifer sibling species. Limnology and Oceanography 49: 40–50.

    Article  Google Scholar 

  • Ciros-Pérez, J., E. Ortega-Mayagoitia & J. Alcocer, 2015. The role of ecophysiological and behavioral traits in structuring the zooplankton assemblage in a deep, oligotrophic, tropical lake. Limnology and Oceanography 60: 2158–2172.

    Article  Google Scholar 

  • Costello, M. J., S. Wilson & B. Houlding, 2012. Predicting total global species richness using rates of species description and estimates of taxonomic effort. Systematic Biology 61: 871–883.

    Article  PubMed  Google Scholar 

  • Curini-Galletti, M., T. Artois, V. Delogu, W. H. De Smet, D. Fontaneto, U. Jondelius, F. Leasi, A. Martínez, I. Meyer-Wachsmuth, K. S. Nilsson, P. Tongiorgi, K. Worsaae & M. A. Todaro, 2012. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PloS One 7: e33801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahms, H. U., A. Hagiwara & J. S. Lee, 2011. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquatic Toxicology 101: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.

    Article  Google Scholar 

  • Dellicour, S. & J.-F. Flot, 2015. Delimiting species-poor data sets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Systematic Biology 64: 900–908.

    Article  PubMed  Google Scholar 

  • Doyle, J. J., 1995. The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Systematic Botany 20: 574–588.

    Article  Google Scholar 

  • Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezard, T. H. G., T. Fujisawa & T. G. Barraclough, 2009. splits: SPecies’ LImits by Threshold Statistics. http://R-Forge.R-project.org/projects/splits/.

  • Flot, J.-F., A. Couloux & S. Tillier, 2010. Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s field for recombination approach and its application to the coral genus Pocillopora in Clipperton. BMC Evolutionary Biology 10: 372.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaneto, D., 2011. Biogeography of Microscopic Organisms: is Everything Small Everywhere?. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Fontaneto, D., 2014. Molecular phylogenies as a tool to understand diversity in rotifers. International Review of Hydrobiology 99: 178–187.

    Article  CAS  Google Scholar 

  • Fontaneto, D., G. F. Ficetola, R. Ambrosini & C. Ricci, 2006. Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals? Global Ecology and Biogeography 15: 153–162.

    Article  Google Scholar 

  • Fontaneto, D., I. Giordani, G. Melone & M. Serra, 2007. Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583: 297–307.

    Article  Google Scholar 

  • Fontaneto, D., M. Kaya, E. A. Herniou & T. G. Barraclough, 2009. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53: 182–189.

    Article  CAS  PubMed  Google Scholar 

  • Fontaneto, D., C. Q. Tang, U. Obertegger, F. Leasi F. & T. G. Barraclough, 2012. Different diversification rates between sexual and asexual organisms. Evolutionary Biology 39: 262–270

  • Fontaneto, D., J.-F. Flot & C. Q. Tang, 2015. Guidelines for DNA taxonomy with a focus on the meiofauna. Marine Biodiversity 45: 433–451.

    Article  Google Scholar 

  • Fujisawa, T. & T. G. Barraclough, 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Systematic Biology 62: 707–724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukusho, K., 1983. Present status and problems in culture of the rotifer Brachionus plicatilis for fry production of marine fishes in Japan. In Hector, R. (ed.), Symposium Internacionale de Aquaculture, Coquimbo: 361–374

  • Fu, Y., K. Hirayama & Y. Natsukari, 1991a. Morphological differences between two types of the rotifer Brachionus plicatilis O.F. Muller. Journal of Experimental Marine Biology and Ecology 151: 29–41.

    Article  Google Scholar 

  • Fu, Y., K. Hirayama & Y. Natsukari, 1991b. Genetic divergence between S and L type strains of the rotifer Brachionus plicatilis O.F. Muller. Journal of Experimental Marine Biology and Ecology 151: 43–56.

    Article  Google Scholar 

  • Fu, Y., A. Hagiwara & K. Hirayama, 1993. Crossing between seven strains of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 59: 2009–2016.

    Article  Google Scholar 

  • Gabaldón, C., M. J. Carmona, J. Montero-Pau & M. Serra, 2015. Long-term competitive dynamics of two cryptic rotifer species: diapause and fluctuating conditions. PloS One 10: e0124406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabaldón, C., D. Fontaneto, J. Montero-Pau, M. J. Carmona & M. Serra, 2016, Ecological differentiation in cryptic rotifer species: what we can learn from the B. plicatilis complex. Hydrobiologia. doi:10.1007/s10750-016-2723-9.

  • Garamszegi, L. Z., 2014. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer, Berlin.

    Book  Google Scholar 

  • García-Morales, A. E. & M. Elías-Gutiérrez, 2013. DNA barcoding of freshwater Rotifera in Mexico: Evidence of cryptic speciation in common rotifers. Molecular Ecology Resources 13: 1097–1107.

    PubMed  Google Scholar 

  • Gilbert, J. J. & R. S. Stemberger, 1984. Asplanchna-induced polymorphism in the rotifer Keratella slacki. Limnology and Oceanography 29: 1309–1316.

    Article  Google Scholar 

  • Gómez, A. & M. Serra, 1995. Behavioral reproductive isolation among sympatric strains of Brachionus plicatilis Müller 1786: insights into the status of this taxonomic species. Hydrobiologia 313: 111–119.

    Article  Google Scholar 

  • Gómez, A. & T. W. Snell, 1996. Sibling species in the Brachionus plicatilis species complex. Journal of Evolutionary Biology 9: 953–964.

    Article  Google Scholar 

  • Gómez, A., M. Temprano & M. Serra, 1995. Ecological genetics of a cyclical parthenogen in temporary habitats. Journal of Evolutionary Biology 8: 601–622.

    Article  Google Scholar 

  • Gómez, A., G. R. Carvalho & D. H. Lunt, 2000. Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks. Proceedings of the Royal Society of London B: Biological Sciences 267: 2189–2197.

    Article  Google Scholar 

  • Gómez, A., M. Serra, G. R. Carvalho & D. H. Lunt, 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.

    Article  PubMed  Google Scholar 

  • Gómez, A., J. Montero-Pau, D. H. Lunt, M. Serra & S. Campillo, 2007. Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Molecular Ecology 16: 3228–3240.

    Article  PubMed  Google Scholar 

  • Guidon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  Google Scholar 

  • Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. DeWaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270: 313–321.

    Article  CAS  Google Scholar 

  • Hwang, D. S., H. U. Dahms, H. G. Park & J. S. Lee, 2013. A new intertidal Brachionus and intrageneric phylogenetic relationships among Brachionus as revealed by allometry and CO1-ITS1 gene analysis. Zoological Studies 52: 1–10.

    Article  Google Scholar 

  • Jersabek, C. D. & E. Bolortsetseg, 2010. Mongolian rotifers (Rotifera, Monogononta)–a checklist with annotations on global distribution and autecology. Proceedings of the Academy of Natural Sciences of Philadelphia 159: 119–168.

    Article  Google Scholar 

  • Kamilar, J. M. & N. Cooper, 2013. Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B 368: 20120341.

    Article  Google Scholar 

  • Katoh, K., G. Asimenos & H. Toh, 2009. Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology 537: 39–64.

    Article  CAS  PubMed  Google Scholar 

  • Keane, T. M., C. J. Creevey, M. M. Pentony, T. J. Naughton & J. O. Mclnerney, 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology 6: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • King, C. E. & Y. Zhao, 1987. Coexistence of rotifer (Brachionus plicatilis) clones in Soda Lake, Nevada. Hydrobiologia 147: 57–64.

    Article  Google Scholar 

  • Knowlton, N., 1993. Sibling species in the sea. Annual Review of Ecology and Systematics 24: 189–216.

    Article  Google Scholar 

  • Kutikova, L.A., 1970 Rotifer Fauna USSR. Fauna USSR. 104. Leningrad: Akademii Nauk SSSR

  • Lowe, C. D., S. J. Kemp, A. D. Bates & D. J. S. Montagnes, 2005. Evidence that the rotifer Brachionus plicatilis is not an osmoconformer. Marine Biology 146: 923–929.

    Article  Google Scholar 

  • Lubzens, E. & O. Zmora, 2003. Production and nutritional value of rotifers. In McEvoy, L. A. (ed.), Live Feeds in Marine Aquaculture. Blackwell, Oxford: 17–64.

    Chapter  Google Scholar 

  • Malekzadeh-Viayeh, R., R. Pak-Tarmani, N. Rostamkhani & D. Fontaneto, 2014. Diversity of the rotifer Brachionus plicatilis species complex (Rotifera: Monogononta) in Iran through integrative taxonomy. Zoological Journal of the Linnean Society 170: 233–244.

    Article  Google Scholar 

  • Mayr, E., 1963. Animal Species and Evolution. Belknap Press of Harvard University Press, Cambridge.

    Book  Google Scholar 

  • Mills, S., A. Gómez & D. H. Lunt, 2007. Global isolation by distance despite strong regional phylogeography in a small metazoan. BMC Evolutionary Biology 7: 225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Montero-Pau, J., E. Ramos-Rodríguez, M. Serra & A. Gómez, 2011. Long-term coexistence of rotifer cryptic species. PloS ONE 6: e21530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, O. F., 1786. Animacula infusoria fluviatilia et marina, quae detexit, systematice descripsit et ad vivum delineari curavit. Havniae [Copenhagen] et Lipsiae [Leipzig]: cura Othonis Fabricii, typis Nicolai Mölleri.

  • Münkemüller, T., S. Lavergne, B. Bzeznik, S. Dray, T. Jombart, K. Schiffers & W. Thuiller, 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution 3: 743–756.

    Article  Google Scholar 

  • Obertegger, U., G. Flaim & D. Fontaneto, 2014. Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshwater Biology 59: 2413–2427.

    Article  Google Scholar 

  • Oogami, H., 1976. On the morphology of Brachionus plicatilis. Newsletter from Izu Branch, Shizuoka Prefectural Fisheries Research Center 184: 2–5.

    Google Scholar 

  • Orme, C. D. L., R. Freckleton, G. Thomas, T. Petzoldt, S. Fritz, N. Isaac, W. Pearse, 2013. Caper: comparative analyses of phylogenetics and evolution in R. R package version 0.5.2. http://CRAN.R-project.org/package=caper.

  • Ortells, R., T. W. Snell, A. Gómez & M. Serra, 2000. Patterns of genetic differentiation in resting egg banks of a rotifer species complex in Spain. Archiv für Hydrobiologie 149: 529–551.

    Article  Google Scholar 

  • Ortells, R., A. Gómez & M. Serra, 2003. Coexistence of cryptic rotifer species: ecological and genetic characterisation of Brachionus plicatilis. Freshwater Biology 48: 2194–2202.

    Article  Google Scholar 

  • Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Papakostas, S., E. Michaloudi, K. Proios, M. Brehm, L. Verhage, J. Rota, C. Pena, G. Stamou, V. L. Pritchard, D. Fontaneto & S. A. J. Declerck, 2016. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Systematic Biology. doi:10.1093/sysbio/syw016.

  • Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger, M. & K. Schwenk, 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7: 121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Puillandre, N., A. Lambert, S. Brouillet & G. Achaz, 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Molecular Ecology 21: 1864–1877.

    Article  CAS  PubMed  Google Scholar 

  • R Core Team, 2014. R: a Language and Environment for Statistical Computing. R Core Team. R Foundation for Statistical Computing, Vienna

  • Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2013. Tracer v1.5. http://beast.bio.ed.ac.uk/tracer.

  • Revell, L. J., 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.

    Article  Google Scholar 

  • Rumengan, I. F. M., H. Kayano & K. Hirayama, 1991. Karyotypes of S and L type rotifers Brachionus plicatilis OF Müller. Journal of Experimental Marine Biology and Ecology 154: 171–176.

    Article  Google Scholar 

  • Rumengan, I. F. M., Y. Fu, H. Kayano & K. Hirayama, 1993. Chromosomes and isozymes of hypotriploid strains of the rotifer Brachionus plicatilis. Hydrobiologia 255: 213–217.

    Article  Google Scholar 

  • Sanderson, M. J., 2003. r8 s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301–302.

    Article  CAS  PubMed  Google Scholar 

  • Sarma, S. S. S., R. A. L. Resendiz & S. Nandini, 2011. Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae). Hydrobiologia 662: 179–187.

    Article  Google Scholar 

  • Segers, H., 1995. Nomenclatural consequences of some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313(314): 121–122.

    Article  Google Scholar 

  • Segers, H. & W. H. De Smet, 2008. Diversity and endemism in Rotifera: a review, and Keratella Bory de St Vincent. Biodiversity and Conservation 17: 303–316.

    Article  Google Scholar 

  • Serra, M. & M. R. Miracle, 1983. Biometric analysis of Brachionus plicatilis ecotypes from Spanish lagoons. Hydrobiologia 104: 279–291.

    Article  Google Scholar 

  • Serra, M. & M. R. Miracle, 1987. Biometric variation in three strains of Brachionus plicatilis as a direct response to abiotic variables. Hydrobiologia 147: 83–89.

    Article  CAS  Google Scholar 

  • Serra, M., A. Gómez & M. J. Carmona, 1998. Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 387: 373–384.

    Article  Google Scholar 

  • Serrano, L., M. R. Miracle & M. Serra, 1986. Differential response of Brachionus plicatilis (Rotifera) ecotypes to various insecticides. Journal of Environmental Biology 7: 259–275.

    CAS  Google Scholar 

  • Serrano, L., M. Serra & M. R. Miracle, 1989. Size variation in Brachionus plicatilis resting eggs. Hydrobiologia 186(187): 381–386.

    Article  Google Scholar 

  • Snell, T. W., 1989. Systematics, reproductive isolation and species boundaries in rotifers. Hydrobiologia 186(187): 299–310.

    Article  Google Scholar 

  • Snell, T. W., 1998. Chemical ecology of rotifers. Hydrobiologia 387(388): 267–276.

    Article  Google Scholar 

  • Snell, T. W. & K. Carrillo, 1984. Body size variation among strains of the rotifer Brachionus plicatilis. Aquaculture 37: 359–367.

    Article  Google Scholar 

  • Snell, T. W. & C. A. Hawkinson, 1983. Behavioral reproductive isolation among populations of the rotifer Brachionus plicatilis. Evolution 37: 1294–1305.

    Article  PubMed  Google Scholar 

  • Snell, T. W. & G. Persoone, 1989. Acute toxicity bioassays using rotifers. I. A test for brackish and marine environments with Brachionus plicatilis. Aquatic Toxicology 14: 65–80.

    Article  CAS  Google Scholar 

  • Snell, T. W., R. K. Johnston, K. E. Gribble & D. B. Mark Welch, 2015. Rotifers as experimental tools for investigating aging. Invertebrate Reproduction & Development 59: 5–10.

    Article  Google Scholar 

  • Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzer, C.-P., S. Riss & P. Stadler, 2011. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera). BMC Evolutionary Biology 11: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suatoni, E., S. Vicario, S. Rice, T. Snell & A. Caccone, 2006. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer—Brachionus plicatilis. Molecular Phylogenetics and Evolution 41: 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Tang, C. Q., F. Leasi, U. Obertegger, A. Kieneke, T. G. Barradough & D. Fontaneto, 2012. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences 109: 16208–16212.

    Article  CAS  Google Scholar 

  • Tang, C. Q., U. Obertegger, D. Fontaneto & T. G. Barraclough, 2014a. Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evolution 68: 2901–2916.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, C. Q., A. Humphreys, D. Fontaneto & T. G. Barraclough, 2014b. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single locus data. Methods in Ecology and Evolution 5: 1086–1094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trontelj, P. & C. Fiser, 2009. Cryptic species diversity should not be trivialised. Systematics and Biodiversity 7: 1–3.

    Article  Google Scholar 

  • Tschugunoff, N. L., 1921. Über das Plankton des nördlichen Teiles des Kaspisees. Raboty Volzhskoj Biologicheskoj Stancii, Saratov 6: 159–162.

    Google Scholar 

  • Wallace, R. L., T. W. Snell, C. Ricci & T. Nogrady, 2006. Rotifera. Vol. 1. Biology, ecology and systematics. In Dumont, H. J. F. (eds), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 23, 2nd ed. Ghent, Kenobi Productions: 1–299.

  • Watanabe, T., C. Kitajima & S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115–143.

    Article  CAS  Google Scholar 

  • Wiens, J. J. & C. H. Graham, 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics 36: 519–539.

    Article  Google Scholar 

  • Xiang, X. L., Y. L. Xi, X. L. Wen, G. Zhang, J. X. Wang & K. Hu, 2011. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Molecular Ecology 20: 3027–3044.

    Article  PubMed  Google Scholar 

  • Zhang, J., P. Kapli, P. Pavlidis & A. Stamatakis, 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the staff of the Department of Biological Sciences at the University of Texas at El Paso, especially B. Smith, T. Valenzuela, L. and L. Hamden. Two anonymous reviewers provided useful comments to improve an earlier draft of the manuscript. Funding was provided by UTEP’s Office of Research and Sponsored Projects, College of Science, Department of Biological Sciences, NSF DEB 1257068 (E. J. Walsh) and NSF DEB 1257116 (R. L. Wallace).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Fontaneto.

Additional information

Guest editors: M. Devetter, D. Fontaneto, C. D. Jersabek, D. B. Mark Welch, L. May & E. J. Walsh / Evolving rotifers, evolving science

Diego Fontaneto and Elizabeth J. Walsh have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1. ITS1 from BEAST (JPEG 392 kb)

Supplementary Figure S2. ITS1 from PhyML (JPEG 436 kb)

Supplementary Figure S3. COI from BEAST (JPEG 1704 kb)

Supplementary Figure S4. COI from PhyML (JPEG 1710 kb)

Supplementary Figure S5. RAxML on combined alignment (JPEG 437 kb)

10750_2016_2725_MOESM6_ESM.txt

Supplementary File S1. List of all 1273 isolates with accession numbers for COI and ITS1. For each isolate, the identification of unique sequences, and the attribution to the 15 species is reported. [GenBank accessions to be disclosed later] (TXT 103 kb)

Supplementary material 7 (DOCX 96 kb)

Supplementary File S3. Phylogeny of the 14 species with COI and ITS1 in newick format (TXT 1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, S., Alcántara-Rodríguez, J., Ciros-Pérez, J. et al. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796, 39–58 (2017). https://doi.org/10.1007/s10750-016-2725-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2725-7

Keywords

Navigation