Skip to main content
Log in

Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate

  • WETLANDS BIODIVERSITY AND PROCESSES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The goal of this study is to examine the suitability of three plants, Typha spp., Phragmites spp. and Iris pseudacorus, in a free-water surface constructed wetland created to treat eutrophic water from Lake Albufera (Valencia, Spain), a wetland of international importance. The growth, coverage and nutrient content of the three plants were studied, and chemical analyses were performed according to standard methods. The maximum standing crops measured for each plant were 1.9, 18.2 and 3.3 kg m−2, respectively, and their average nutrient concentrations were 2.1, 1.2 and 1.7 g P kg−1 and 12.1, 11.7 and 10.1 g N kg−1, respectively. A multiple harvest of Iris pseudacorus revealed that the removal of nutrients could be increased up to 50% for N and 100% for P compared with a single harvest. Biomass decomposition assays showed high values for five-day biochemical oxygen demand (115–207 mg O2 g−1, depending on the plant and its age) and a substantial release of phosphorus, up to 100% of that contained in the biomass, highlighting the need to remove the litter fall. This study provides key aspects for vegetation selection and management (planting and harvesting) in a novel application of constructed wetlands to enhance water quality and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.lifealbufera.org/index.php/es/networking.

References

  • Álvarez, J. A. & E. Bécares, 2006. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecological Engineering 28: 99–105.

    Article  Google Scholar 

  • Arroyo, P., I. Blanco, R. Cortijo, E. L. Calabuig & G. Ansola, 2013. Twelve-Year performance of a constructed wetland for municipal wastewater treatment: water quality improvement, metal distribution in wastewater, sediments, and vegetation. Water, Air and Soil Pollution 224: 1762.

    Article  Google Scholar 

  • Asaeda, T., L. H. Nam, P. Hietz, N. Tanaka & S. Karunaratnex, 2002. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquatic Botany 73: 223–229.

    Article  Google Scholar 

  • Březinova, T. & J. Vymazal, 2015. Nitrogen standing stock in Phragmites australis growing in constructed wetlands – Do we evaluate it correctly? Ecological Engineering 74: 286–289.

    Article  Google Scholar 

  • Brix, H., 1999. The European research project on reed die-back and progression (EUREED). Limnologica 29: 5–10.

    Article  Google Scholar 

  • Cheng, X. Y., W. Y. Chen, B. H. Gu, X. C. Liu, F. Chen, Z. H. Chen, X. Y. Zhou, Y. X. Li, H. Huang & Y. J. Chen, 2009. Morphology, ecology, and contaminant removal efficiency of eight wetland plants with different root systems. Hydrobiologia 623: 77–85.

    Article  CAS  Google Scholar 

  • Ciria, M. P., M. L. Solano & P. Soriano, 2005. Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering 92: 535–544.

    Article  Google Scholar 

  • Comín, F. A., J. A. Romero, O. Hernández & M. Menéndez, 2001. Restoration of wetlands from abandoned rice fields for nutrient removal, and biological community and landscape diversity. Restoration Ecology 9: 201–208.

    Article  Google Scholar 

  • Coveney, M. F., D. L. Stites, E. F. Lowe, L. E. Battoe & R. Conrow, 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering 19: 141–159.

    Article  Google Scholar 

  • De Meester, S., J. Demeyer, F. Velghe, A. Peene, H. Van Langenhove & J. Dewulf, 2012. The environmental sustainability of anaerobic digestion as a biomass valorization technology. Bioresource Technology 121: 396–403.

    Article  PubMed  Google Scholar 

  • Dunne, E. J., M. F. Coveney, E. R. Marzolf, V. R. Hoge, R. Conrow, R. Naleway, E. F. Lowe & L. E. Battoe, 2012. Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from Lake Apopka, Florida. Ecological Engineering 42: 90–100.

    Article  Google Scholar 

  • Fisher, J., C. J. Stratford & S. Buckton, 2009. Variation in nutrient removal in three wetland blocks in relation to vegetation composition, inflow nutrient concentration and hydraulic loading. Ecological Engineering 35: 1387–1394.

    Article  Google Scholar 

  • Gigante, D., C. Angiolini, F. Landucci, F. Maneli, B. Nisi, O. Vaselli, R. Venanzoni & L. Lastrucci, 2014. New occurrence of reed bed decline in southern Europe: do permanent flooding and chemical parameters play a role? Comptes Rendus Biologies 337: 487–498.

    Article  PubMed  Google Scholar 

  • Li, L., Y. Li, D. K. Biswas, Y. Nian & G. Jiang, 2008. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Tecnology 99: 1656–1663.

    Article  CAS  Google Scholar 

  • Li, X. N., H. L. Song, W. Li, X. W. Lu & O. Nishimura, 2010. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering 36: 382–390.

    Article  Google Scholar 

  • Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.

    Article  CAS  Google Scholar 

  • Maddison, M., T. Mauring, K. Remm, M. Lesta & Ü. Mander, 2009. Dynamics of Typha latifolia L. populations in treatment wetlands in Estonia. Ecological Engineering 35: 258–269.

    Article  Google Scholar 

  • Ministerio de Agricultura, Pesca y Alimentación (MAPA). 1986. Métodos oficiales de análisis, vol. 3. Mundi-Prensa, Madrid.

  • Martín, M., N. Oliver, C. Hernández-Crespo, S. Gargallo & M. C. Regidor, 2013. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecological Engineering 50: 52–61.

    Article  Google Scholar 

  • Menéndez, M., M. Martínez, O. Hernández & F. Comín, 2001. Comparison of leaf decomposition in two mediterranean rivers: a large eutrophic river and an oligotrophic stream (S Catalonia, NE Spain). International Review of Hydrobiology 86: 475–486.

    Article  Google Scholar 

  • Mitsch, W. J., 1995. Restoration of our lakes and rivers with wetlands – an important application of ecological engineering. Water Science and Technology 31: 167–177.

    Article  CAS  Google Scholar 

  • Qiu, Z. C., M. Wang, W. L. Lai, F. H. He & Z. H. Chen, 2011. Plant growth and nutrient removal in constructed monoculture and mixed wetlands related to stubble attributes. Hydrobiologia 661: 251–260.

    Article  CAS  Google Scholar 

  • Rodrigo, M. A., M. Martín, C. Rojo, S. Gargallo, M. Segura & N. Oliver, 2013. The role of eutrophication reduction of two small man-made Mediterranean lagoons in the context of a broader remediation system: effects on water quality and plankton contribution. Ecological Engineering 61: 371–382.

    Article  Google Scholar 

  • Sheng-Bing, H., Y. Li, K. Hai-Nan, L. Zhi-Ming, W. De-Yi & H. Zhan-Bo, 2007. Treatment efficiencies of constructed wetlands for eutrophic landscape river water. Pedosphere 17: 522–528.

    Article  Google Scholar 

  • Suzuki, T., N. Ariyawathie & Y. Kurihara, 1989. Amplification of Total Dry Matter, Nitrogen and Phosphorus Removal from Stands of Phragmites Australis by Harvesting and Reharvesting Regenerated Shoots. In Hammer, D. A. (ed.), Constructed Wetlands for Wastewater Treatment. Lewis Publishers, Chelsea, MI: 530–535.

    Google Scholar 

  • Tang, X., S. Huang, M. Scholz & J. Li, 2009. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water Air Soil Pollution 197: 61–73.

    Article  CAS  Google Scholar 

  • Tanner, C. C., 1996. Plants for constructed wetland treatment systems – a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering 7: 59–83.

    Article  Google Scholar 

  • Vera, P. & M. Giménez, 2013. Colonización y evolución inicial de la comunidad de paseriformes en un humedal restaurado del Este de la península ibérica. Revista de anillamiento 31–32: 61–72.

    Google Scholar 

  • Vymazal, J., 2011. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674: 133–156.

    Article  CAS  Google Scholar 

  • Vymazal, J., 2013. Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering 61: 582–592.

    Article  Google Scholar 

  • Vymazal, J. & L. Kröpfelová, 2005. Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czesch Republic. Ecological Engineering 25: 606–621.

    Article  Google Scholar 

  • Vymazal, J., L. Kröpfelová, J. Švehla & J. Štíchová, 2010. Can multiple harvest of aboveground biomass enhance removal of trace elements in constructed wetlands receiving municipal swage? Ecological Engineering 36: 939–945.

    Article  Google Scholar 

  • Wright, R. M. & J. A. McDonnell, 1986. Macrophyte growth in shallow streams: biomass model. Journal of Environmental Engineering 112: 967–982.

    Article  CAS  Google Scholar 

  • Xie, Y., D. Yu & B. Ren, 2004. Effects of nitrogen and phosphorus availability on the decomposition of aquatic plants. Aquatic Botany 80: 29–37.

    Article  Google Scholar 

  • Zhang, C. B., J. Wang, W. L. Liu, S. X. Zhu, H. L. Ge, S. X. Chang, J. Chang & Y. Ge, 2010. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering 36: 62–68.

    Article  Google Scholar 

  • Zhao, Y., X. Xia & Z. Yang, 2013. Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake. Journal of Environmental Sciences 25: 16–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the anonymous reviewers and the editor for their valuable comments to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Hernández-Crespo.

Ethics declarations

Ethical rules

This manuscript has been prepared according to the ethical rules of Hydrobiologia, and it has not been submitted to other journals.

Additional information

Guest editors: Pierluigi Viaroli, Marco Bartoli & Jan Vymazal / Wetlands Biodiversity and Processes: Tools for Management and Conservation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Crespo, C., Oliver, N., Bixquert, J. et al. Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia 774, 183–192 (2016). https://doi.org/10.1007/s10750-015-2493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2493-9

Keywords

Navigation