Skip to main content
Log in

Distribution of benthic macroinvertebrates in a tropical reservoir cascade

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The functioning of systems arranged in cascades of reservoirs can be explained by the Cascading Reservoir Continuum Concept, providing a theoretical framework for addressing ecological processes. In this context, this study tested the following hypotheses: (i) the benthic macroinvertebrate assemblage shows a nested distribution along a reservoir cascade; and (ii) local factors explain the structure of the benthic assemblage in every reservoir along the cascade. Macroinvertebrates play essential role in aquatic systems, especially due to recycling and, in reservoirs, as important links in every food chain. Sampling was conducted quarterly between October 2006 and September 2010 in six reservoirs located in the São Francisco River, Brazil. The benthic macroinvertebrate assemblage showed nested distribution in the reservoirs, indicating that a loss of species occurs along the cascade. Each reservoir presented a different set of variables that explained the distribution of macroinvertebrates, showing the importance of local factors determining the composition and distribution of benthic assemblages in the reservoirs. Therefore, there is a clear interaction between the position of a reservoir along a cascade and the macroinvertebrate assemblages, which indicate the importance of considering this pattern during the decision-making process of constructing new dams on rivers already regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A., L. C. Gomes & F. M. Pelicice, 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Eduem, Maringá.

    Google Scholar 

  • Agostinho, A. A., F. M. Pelicice & L. C. Gomes, 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal Biology 4: 1119–1132.

    Article  Google Scholar 

  • Almeida-Neto, M., P. R. J. Guimarães & T. M. A. Lewinsohn, 2008. Consistent metric for nestedness analysis in ecological systems: reconciling concept and quantification. Oikos 117: 1227–1239.

    Article  Google Scholar 

  • Barbosa, F. A. R., J. Padisák, E. L. G. Espindola, G. Borics & O. Rocha, 1999. The cascading Reservoir Continuum Concept (CRCC) and its application to the River Tietê basin, São Paulo State, Brazil. In Tundisi, J. G. & M. Straskaba (eds.), Theoretical Reservoir Ecology and its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, São Carlos.

    Google Scholar 

  • Behrend, R. D. L., A. M. Takeda, L. C. Gomes & S. E. P. Fernandes, 2012. Using oligochaeta assemblages as an indicator of environmental changes. Brazilian Journal Biology 72: 873–884.

    Article  CAS  Google Scholar 

  • Benson, N. G. & P. L. Hudson, 1975. Effects of a reduced fall drawdown on benthos abundance in Lake Francis Case. Transactions of the American Fisheries Society 104: 526–528.

    Article  Google Scholar 

  • Callisto, M., M. Goulart, F. A. R. Barbosa & O. Rocha, 2005. Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco river (northeastern brazil). Brazilian Journal Biology 2: 229–240.

    Article  Google Scholar 

  • Costa, F. L. M. & A. O. M. Callisto, 2006. Inventário da diversidade de macroinvertebrados bentônicos no reservatório da estação ambiental de Peti, MG, Brasil. Neotropical Biology and Conservation 1: 17–23.

    Google Scholar 

  • R Development Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Dominguez, E. & H. R. Fernandez, 2001. Guia para La determinacion de los artropodos bentônicos sudamericanos. Tucuman, Universidad Nacional de Tucuman, Facultad de Ciencias Naturales e Instituto M. Lillo.

  • Drastík, V., J. Kubecka, M. Tuser, M. Cech, J. Frouzová, O. Jarolím & M. Prchalová, 2008. The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs. Hydrobiologia 609: 25–36.

    Article  Google Scholar 

  • Dudgeon, D., 2010. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Current Options in Environmental Sustainability 2(5–6): 422–430.

    Article  Google Scholar 

  • EMBRAPA, 1999. Manual de análises químicas de solos, plantas e fertilizantes. EMBRAPA/Embrapa Solos/Embrapa Informática, Campinas.

    Google Scholar 

  • Ford, D. E., 1990. Reservoir Transport Processes. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds.), Reservoir Limnology: Eco-logical Perspectives. Wiley, New York.

    Google Scholar 

  • Gillespie, B. R., L. E. Brownm & P. Kaym, 2014. Effects of impoundment on macroinvertebrate community assemblages in upland streams. River Research and Applications. doi:10.1002/rra.2785.

    Google Scholar 

  • Heino, J., T. Muotka & R. Paavola, 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of animal ecology 72: 425–434.

    Article  Google Scholar 

  • Heino, J., H. Myrkra & T. Muotka, 2009. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. Diversity and Distributions 15: 198–206.

    Article  Google Scholar 

  • Henriques-Silva, R., Z. Lindo & P. R. Peres-Neto, 2013. A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 3: 627–639.

    Article  Google Scholar 

  • Humphries, P., H. Keckeis & B. Finlayson, 2014. The river wave concept: integrating river ecosystem models. BioScience 64: 870–882.

    Article  Google Scholar 

  • Hunt, P. C. & W. Jones, 1972. The effect of water level fluctuations on a littoral fauna. Journal of Fish Biology 4: 385.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river–floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Kimmel, B. L., O. T. Lind & L. J. Paulson, 1990. Reservoir Primary Production. In Thornton, K. W., B. L. Kimmel & F. E. Payne (eds.), Reservoir Limnology: Ecological Perspectives. Wiley, New York.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd English ed. Elsevier, Amsterdam.

    Google Scholar 

  • Lucadamo, L., A. Mezzotero, N. J. Voelz & L. Gallo, 2012. Seasonal changes of abiotic and biotic gradients downstream a multiple use reservoir in a mediterranean river. River Research and Applications 28: 103–117.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • McEwen, D. C. & M. G. Butler, 2010. The effects of water-level manipulation on the benthic invertebrates of a managed reservoir. Freshwater Biology 55: 1086–1101.

    Article  Google Scholar 

  • Mendonça, E. S. & E. S. Matos, 2005. Matéria orgânica do solo: métodos de análises. Viçosa, UFV, 1ª Edição.

  • Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall/Hunt Publishing Company, Dubuque.

    Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., G. F. Blanchet, R. Kindt, P. Legendre, R. Minchin, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2013. Vegan: Community Ecology Package. R package version 2.0-10.

  • Peeters, E. T. H. M., R. Gylstra & J. H. Vos, 2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519: 103–115.

    Article  Google Scholar 

  • Perez, G. R., 1988. Guia para el estudio de los macroinvertebrados acuaticos del Departamento de Antioquia. Universidad de Antioquia, Bogota.

    Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards a mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Qian, H. & R. Ricklefs, 2012. Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Global Ecology and Biogeography 21: 341–351.

    Article  Google Scholar 

  • Reichardt, K., 1990. A água em sistemas agrícolas. Editora Manole LTDA, São Paulo.

    Google Scholar 

  • Shmida, A. & M. V. Wilson, 1985. Biological determinants of species diversity. Journal of Biogeography 12: 1–20.

    Article  Google Scholar 

  • Straskraba, M., 1990. Limnological particularities of multiple reservoir series. Archivfür Hydrobiologie-Beiheft Ergebnisse der Limnologie 33: 677–678.

    Google Scholar 

  • Tagliaferro, M., M. L. Miserendino, A. Liberoff, A. Quiroga & M. Pascual, 2013. Dams in the last large free-flowing Rivers of Patagonia, the Santa Cruz River, environmental features, and macroinvertebrates community. Limnologica 43: 500–509.

    Article  Google Scholar 

  • Thorp, J. H. & A. P. Covich, 2001. Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic Press, San Diego.

    Google Scholar 

  • Townsend, C. R., M. Begon & J. L. Harper, 2003. Fundamentos em ecologia. Artmed, Porto Alegre.

    Google Scholar 

  • Trivinho-Strixino, S. & G. Strixino, 1995. Larvas de Chironomidae (Diptera) do estado de São Paulo—Guia de identificação e diagnose dos gêneros. São Carlos, UFSCar.

    Google Scholar 

  • Tundisi, J. G. & T. Matsumura-Tundisi, 2003. Integration of research and management in optimizing multiple uses of reservoirs: the experience of South America and Brazilian case studies. Hydrobiologia 500: 231–242.

    Article  Google Scholar 

  • Ulrich, W., M. Almeida-Neto & N. Gotelli, 2009. A consumer’s guide to nestedness analysis. Oikos 118: 3–17.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The Serial Discontinuity Concept of Lotic Ecosystems. In Fontaine, T. D. & S. M. Bartell (eds.), Dynamics of Lotic Ecosystems. Ann Arbor Sciences, Ann Arbor: 29–42.

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1995. The serial discontinuity concept of lotic ecosystems: Extending the model to floodplain rivers. Regulated Rivers: Research and Manegement 10: 159–168.

    Article  Google Scholar 

Download references

Acknowledgements

We express our appreciation to the Hydroelectric Company of San Francisco (CHESF) and Apolonio Sales Foundation for Educational Development (FADURPE) for financial support and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowship to graduate students. AAA and LCG are “Bolsista Produtividade” of CNPq. We thank Nadson R. Simões, anonymous reviewers, and Associate Editor for helpful comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália Carneiro Lacerda dos Santos.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, N.C.L., de Santana, H.S., Dias, R.M. et al. Distribution of benthic macroinvertebrates in a tropical reservoir cascade. Hydrobiologia 765, 265–275 (2016). https://doi.org/10.1007/s10750-015-2419-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2419-6

Keywords

Navigation