Skip to main content

Advertisement

Log in

Epilithic diatom flora in contrasting land-use settings in tropical streams, Manyame Catchment, Zimbabwe

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the response of stream diatom assemblages to changes in water quality in different land-use settings. Water quality sampling and benthic diatom community data were collected in April and September 2013 at 95 sampling stations in the Manyame Catchment, Zimbabwe. The data collected were subjected to multivariate statistical techniques; CCA and cluster analysis to determine environmental gradients along which the diatom species were distributed as well as to elucidate hypothesized differences in community structure per land-use type. Three land-use categories were identified in this study: commercial agricultural, communal agricultural and urban-mining areas in order of increasing human disturbance. No significant differences in physical and chemical variables were recorded between the two sampling periods. Study sites were grouped into roughly three broad categories based on CCA and cluster analysis. As pollution increased, low to moderate pollution tolerant species such as Cocconeis placentula, Surirella linearis and Surirella robusta were replaced by high pollution tolerant species such as Pinnularia braunii, Tryblionella coarcata, Luticola goeppertiana and Stauroneis smithii. This shows that diatom assemblages are potential indicators of changes in water quality due to changes in catchment land-use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, J .R., E. E. Hardy, J. T. Roach & R. E. Witmer, 1976. A Land Use and Land Cover Classification System For Use With Remote Sensor Data. Geological Survey Professional Paper No. 964: U.S. Government Printing Office, Washington, DC. 28.

  • Antoniades, D., M. S. V. Douglas & J. P. Smol, 2009. Biogeographic distributions and environmental controls of stream diatoms in the Canadian Arctic Archipelago. Botany 8: 443–454.

    Article  Google Scholar 

  • APHA, 1988. Standard Methods for the Examination of Water and Waste Water, 20th ed. American Public Health association, Washington, DC.

    Google Scholar 

  • Belore, M. L., J. G. Winter & H. C. Duthie, 2002. Use of diatoms and macroinvertebrates as bioindicators of water quality in southern Ontario Rivers. Canadian Water Resources Journal 27: 457–484.

    Article  Google Scholar 

  • Bere, T., 2007. The assessment of nutrient loading and retention in Upper segment of the Chinyika River, Harare; Implications for eutrophication. Water SA 33: 279–284.

    CAS  Google Scholar 

  • Bere, T. & T. Mangadze, 2014. Diatomcommunities in streamsdrainingurban areas: community structure in relation to environmental variables. Journal of Tropical Ecology 55: 271–281.

    Google Scholar 

  • Bere, T. & J. G. Tundisi, 2010a. Biological monitoring of lotic ecosystems: the role of diatoms. Brazilian Journal of Biology 70: 493–502.

    Article  CAS  Google Scholar 

  • Bere, T. & J. G. Tundisi, 2010b. Epipsammic diatoms in streams influenced by urban pollution. Brazilian Journal of Biology 70: 921–930.

    Article  Google Scholar 

  • Bere, T. & J. G. Tundisi, 2011a. Influence of land-use patterns on benthic diatom communities and water quality in the tropical Monjolinho hydrological basin, São Carlos-SP, Brazil. Water SA 37: 93–102.

    Article  CAS  Google Scholar 

  • Bere, T. & J. G. Tundisi, 2011b. Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), São Carlos-SP, Brazil. Hydrobiologia 661: 261–276.

    Article  CAS  Google Scholar 

  • Bere, T., T. Mangadze & T. Mwedzi, 2014. The application and testing of diatom-based indices of water quality assessment in the Chinhoyi Town, Zimbabwe. Water SA 40: 503–512.

    Article  Google Scholar 

  • Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. NIWA, Christchurch.

    Google Scholar 

  • Bolstad, P. V. & W. T. Swank, 1997. Cumulative Impacts of land-use. Land-use on Water Quality in a Southern Appalachian Watershed. Journal of the American Water Resources Association 33(3): 15 pp.

  • Bona, F., E. Falasco, S. Fassina, B. Griselli & G. Badino, 2007. Characterization of diatom assemblages in mid-altitude streams of NW Italy. Hydrobiologia 583: 265–274.

    Article  CAS  Google Scholar 

  • Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Development in insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495–523.

    Article  CAS  PubMed  Google Scholar 

  • Broussard, W. & R. E. Turner, 2009. A century of changing land-use and water-quality relationships in the continental US. Frontiers in Ecology and the Environment 7: 302–307.

    Article  Google Scholar 

  • Buss, D. F., D. F. Baptista, M. P. Silveira, J. L. Nessimian & L. F. Dorville, 2002. Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia 481: 125–136.

    Article  CAS  Google Scholar 

  • Dallas, H. F. & J. A. Day, 2004. The Effect of Water Quality Variables on Aquatic Ecosystems – A Review for Water Research Commission Report No. TT 22/04. Water Research Commission, Pretoria.

  • Dohet, A., L. Ector & H. M. Cauchie, 2008. Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg. Animal Biology 5: 419–472.

    Article  Google Scholar 

  • Duong, T., S. Morin, M. Coste, O. Herlory, A. Feurtet-Mazel & A. Boudou, 2010. Experimental toxicity and bioaccumulation of Cd in freshwater periphytic diatoms in relation with biofilm maturity. Science of the Total Environment 408: 552–562.

    Article  CAS  PubMed  Google Scholar 

  • Gurbuz, H. & E. Kivrak, 2002. Use of epilithic diatoms to evaluate water quality in the Karasu River of Turkey. Journal of Environmental Biology 23: 239–246.

    CAS  PubMed  Google Scholar 

  • Hammer, O., D. A. T. Harper & P. D. Ryan, 2012.PAST – Palaeontological Statistics, Version 1.90. [http://folk.uio.no/ohammer/past]. Accessed 23 Feb 2013.

  • Hill, B. H., A. T. Herlihy, P. R. Kaufmann, S. J. Decelles & M. A. VanderBorgh, 2003. Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecological Indices 2: 325–338.

    Article  CAS  Google Scholar 

  • James, K., A. Butte, L. Constance, A. David & A. Atkins, 2005. Predicting Water Quality at Hardrock Mines Methods and Models, Uncertainties, and State-of-the-Art

  • Jirka, A. M. & M. J. Carter, 1975. Micro-Semi-Automated Analysis of surface and waste waters for chemical oxygen demand. Analytical Chemistry 47: 1397.

    Article  CAS  PubMed  Google Scholar 

  • Karr, J. R., 1991. Biological integrity: a long-neglected aspect of water resource management. Ecological Application 1: 66–84.

    Article  Google Scholar 

  • Korroleff, F., 1972. In J. R. Carlberg (ed.), Determination of total nitrogen in natural water by means of persulphate oxidation. New Baitic manual with methods for sampling and analysis of physical-chemical and biological parameters. International council for exploration of the sea (ICES), Charlottenland.

  • Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 285–304.

    Google Scholar 

  • Lobo, E. A., K. Katoh & Y. Aruga, 1995. Response of epilithic diatom assemblages to water pollution in rivers in the Tokyo metropolitan area, Japan. Freshwater Biology 34: 191–204.

    Article  Google Scholar 

  • Lowe, R. L., 1974. Environmental Requirements and Pollution Tolerance of Freshwater Diatoms, EPA-670/4-74-005. United States Environmental Protection Agency, Cincinnati, OH.

    Google Scholar 

  • Makore, G. & V. Zano, 2012. Mining within the Great Dyke: Extent, Impacts and Opportunities (No. 6). Zimbabwe Environmental Law Association (ZELA).

  • Masere, P., A. Munodawafa & T. Chitata, 2012. Assessment of human impact on water quality along Manyame River. Journal of Development and Sustainability 1: 754–765.

    Google Scholar 

  • Metzeltin, D. & H. Lange-Bertalot, 1998. Tropical Diatoms of South America II. Iconographia Diatomologica 5: 1–695.

    Google Scholar 

  • Metzeltin, D. & H. Lange-Bertalot, 2007. Tropical Diatoms of South America II. Iconographia Diatomologica 18: 1–877.

    Google Scholar 

  • Mosisch, T. D., S. E. Bunn & P. M. Davies, 2001. The relative importance of shading and nutrients on algal production in subtropical streams. Freshwater Biology 46: 1269–1278.

    Article  Google Scholar 

  • Nielsen, A., D. Trolle, M. Søndergaard, T. L. Lauridsen, R. Bjerring, J. F. Olesen & E. Jeppesen, 2012. Watershed land-use effects on lake water quality in Denmark. Ecological Applications 22: 1187–1200.

    Article  PubMed  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy & G. B. Collins, 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of North American Bethological Society 15: 481–495.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. Hill, P. Kaufmann & A. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in the Mid-Atlantic streams. Journal of Phycology 35: 460–468.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. Hill & A. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of North American Benthological Society 19: 518–540.

    Article  Google Scholar 

  • Pappas, J. L, & E. F. F. Stoermer, 1996. Quantitative method for determining a representative algal sample count. Journal of Phycology 32: 693–696.

  • Pearsall, W. H., 1932. Phytoplankton in the English Lakes II. Composition of the phytoplankton in relation to dissolved substances. Journal of Ecology 2: 241–262.

  • Phiri, C., J. Day, M. Chimbari & E. Dhlomo, 2007. Epiphytic diatoms associated with a submerged macrophyte, Vallisneria aethiopica, in the shallow marginal areas of Sanyati Basin (Lake Kariba): a preliminary assessment of their use as biomonitoring tools. Aquatic Ecology 41: 169–181.

    Article  CAS  Google Scholar 

  • Potapova, M. & D. F. Charles, 2002. Benthic diatoms in USA Rivers: distributions along speciation and environmental gradients. Journal of Biogeography 29: 67–187.

    Article  Google Scholar 

  • Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. Rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.

    Article  CAS  Google Scholar 

  • Rimet, F., L. Ector, H. M. Cauchie & L. Hoffmann, 2004a. Regional distribution of diatom assemblages in the headwater streams of Luxembourg. Hydrobiologia 520: 105–117.

    Article  Google Scholar 

  • Rimet, F., L. Ector, A. Dohet & H. M. Cauchie, 2004b. Impacts of fluoranthene on diatom assemblages and frustule morphology in indoor microcosms. Vie et Milieu 54: 145–156.

    Google Scholar 

  • Rocha, A. A., 1992. Algae as indicators of water pollution. I. In Cordeiro-Marino, M., M. T. P. Azevedo, C. L. Santána, N. Y. Tomita & E. M. Pastino (eds), Algae and Environment: A General Approach. Sociedade Brasileira de Ficologia, CETESB, São Paulo: 34–55.

    Google Scholar 

  • Schindler, D. W., 2009. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnology and Oceanography 54(6): 2349–2358.

    Article  CAS  Google Scholar 

  • Sonneman, J. A., C. J. Walsh, P. F. Breen & A. K. Sharpe, 2001. Effects of urbanization on streams of the Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshwater Biology 46: 553–565.

    Article  CAS  Google Scholar 

  • Stevens, J. R. & D. L. Olsen, 2004. Spartially restricted surveys overtime for aquatic resources. Journal of Agriculture, Biology and Environmental Statistics 4: 415–425.

    Article  Google Scholar 

  • Stevenson, R. J., 2006. Refining diatom indicators for valued ecological attributes and development of water quality criteria. In Ognjanova-Rumenova, N. & K. Manoylov (eds), Advances in Phycological Studies. Pensoft, Sofia-Moscow: 365–383.

    Google Scholar 

  • Taylor, J. C., W. R. Harding & C. G. M. Archibald, 2007b. An Illustrated Guide to Some Common Diatom Species from South Africa. WRC Report No TT 282/07. Water Research Commission, Pretoria.

  • Taylor, J. C., M. S. Janse van Vuuren & A. J. H. Pieterse, 2007a. The application and testing of diatom-based indices in the Vaal and Wilge rivers, South Africa. Water SA 33: 51–60.

    CAS  Google Scholar 

  • Telpy, M. & L. L. Bahls, 2006. Diatom Biocriteria for Montana Streams – Middle Rockies Ecoregion. Report by Larix Systems, Montana.

    Google Scholar 

  • TerBraak, C. J. F. & P. Smilauer, 2002. CANOCO Reference Manual and Can Draw for Windows User’s Guide: Software for Community Ordination, version 4.5. Microcomputer Power, Ithaca, NY

  • TerBraak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Science 37: 130–137.

    Google Scholar 

  • Tison, J., Y. S. Park, M. Coste, J. G. Wasson, F. Rimet, L. Ecto & F. Delmas, 2007. Predicting diatom reference communities at the French hydrosystem scale: a first step towards the definition of the good ecological status. Ecological Modelling 203: 99–108.

    Article  Google Scholar 

  • Todd, A. W., B. R. Russell & J. V. Ward, 1996. Importance of light and nutrients in structuring an algal community in a Rocky Mountain streams. Journal of Freshwater Ecology 11: 399–413.

    Article  Google Scholar 

  • Tong, S. T. Y. & W. Chen, 2002. Modeling the relationship between land-use and surface water quality. Journal of Environmental Management 66: 377–393.

    Article  PubMed  Google Scholar 

  • Tornes, E., J. Cambra, J. Goma, M. Leira, R. Ortiz & S. Sabater, 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Annales de Limnologie 43: 1–11.

    Article  Google Scholar 

  • Tuck, S. L., C. Winqvist, F. Mota, J. AhnstrCom, L. A. Turnbull & J. Bengtsson, 2014. Data from: land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. Dryad Digital Repository. doi:10.5061/dryad.609t7.

    Google Scholar 

  • Walsh, C. J., 2000. Urban impacts on the ecology of receiving waters: a framework for assessment, conservation and restoration. Hydrobiologia 431: 107–114.

    Article  Google Scholar 

  • Walsh, G. & V. Wepener, 2009. The influence of land-use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water SA 35: 579–594.

    Article  CAS  Google Scholar 

  • Weilhoefer, C. L. & Y. D. Pan, 2006. Diatom assemblages and their associations with environmental variables in Oregon Coast Range streams, USA. Hydrobiologia 561: 207–219.

    Article  CAS  Google Scholar 

  • Winter, J. G. & H. C. Duthie, 2000. Stream biomonitoring at an agricultural test sampling station using benthic algae. Canadian Journal of Botany 78(10): 1319–1326.

    Article  Google Scholar 

  • Zar, J. H., 1984. Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ, p 718

  • Zwane, N., 2004. Environmental Effects of Small-scale Alluvial Gold Mining Activities on Integrated Water Resources Management (IWRM): The Case of Lower Manyame Sub-Catchment, Integrated Water Resources Management Programme. University of Zimbabwe, Harare.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taurai Bere.

Additional information

Handling editor: Jasmine Saros

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangadze, T., Bere, T. & Mwedzi, T. Epilithic diatom flora in contrasting land-use settings in tropical streams, Manyame Catchment, Zimbabwe. Hydrobiologia 753, 163–173 (2015). https://doi.org/10.1007/s10750-015-2203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2203-7

Keywords

Navigation