Skip to main content

Advertisement

Log in

Development and evaluation of species distribution models for fourteen native central U.S. fish species

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Environmental change has and will continue to adversely influence aquatic communities. Efforts to model impacts of environmental change on fisheries have largely focused on cold water, commercial, and recreationally valued species, even though warm water, non-game species have important roles in ecosystem services and processes. We developed species distribution models for fourteen warm water fish species native to the central United States and evaluated environmental drivers and predictive performance. We used an ensemble model approach produced by combining forecasts of five single-model techniques. Response plots and variable importance calculations were used to evaluate the influence of individual variables. The predictive performance of the ensemble models was assessed using area under the curve of the receiver operating characteristic plot (AUC). AUC values indicate ensemble models performed better than single-model types, suggesting ensemble models are more reliable and applicable for management purposes than single models. Most models were influenced by a mix of climate, land use, and geophysical variables; however, climate variables were the dominant environmental drivers across models. Given the high sensitivity of models to climate and land use, we expect future climate and land use changes to influence distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguirre-Gutierrez, J., L. G. Carvalheiro, C. Polce, E. E. van Loon, N. Raes, M. Reemer & J. C. Biesmeijer, 2013. Fit-for-purpose: species distribution model performance depends on evaluation criteria—Dutch Hoverflies as a case study. PLoS One 8: e63708.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allouche, O., A. Tsoar & R. Kadmon, 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic. Journal of Applied Ecology 43: 1223–1232.

    Article  Google Scholar 

  • Araujo, M. B. & M. New, 2006. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 42–47.

    Article  PubMed  Google Scholar 

  • Araujo, M. B. & A. Guisan, 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677–1688.

    Article  Google Scholar 

  • Araujo, M. B. & M. Luoto, 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16: 743–753.

    Article  Google Scholar 

  • Austin, M., 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200: 1–19.

    Article  Google Scholar 

  • Austin, M. P., 1985. Continuum concept, ordination methods and niche theory. Annual Review of Ecology, Evolution and Systematics 16: 39–61.

    Article  Google Scholar 

  • Austin, M. P., 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157: 101–118.

    Article  Google Scholar 

  • Babet-Massin, M., W. Thuiller & F. Jiguet, 2010. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33: 878–886.

    Article  Google Scholar 

  • Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377.

    Article  Google Scholar 

  • Bond, N., J. Thomson, P. Reich & J. Stein, 2011. Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research 62: 1043–1061.

    Article  Google Scholar 

  • Boulangeat, I., D. Gravel & W. Thuiller, 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters 15: 584–593.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bouska, K. & G. Whitledge, 2014. Habitat associations of fish assemblages in the Cache River, Illinois. Environmental Biology of Fishes 97: 27–42.

    Article  Google Scholar 

  • Bovee, K. D., Newcomb, T. J. & Coon, T.G. (1994) Relations between habitat variability and population dynamics of bass in the Huron River, Michigan. Biological Report 21. U.S. Geological Survey, Washington, DC: 63 pp.

  • Brewer, S. K., C. F. Rabeni, S. P. Sowa & G. Annis, 2007. Natural landscape and stream segment attributes influencing the distribution and relative abundance of riverine smallmouth bass in Missouri. North American Journal of Fisheries Management 27: 326–341.

    Article  Google Scholar 

  • Brosse, S. & S. Lek, 2000. Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. Freshwater Biology 44: 441–452.

    Article  Google Scholar 

  • Buisson, L. & G. Grenouillet, 2009. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions 15: 613–626.

    Article  Google Scholar 

  • Buisson, L., W. Thuiller, S. Lek, P. Lim & G. Grenouillet, 2008. Climate change hastens the turnover of stream fish assemblages. Global Change Biology 14: 2232–2248.

    Article  Google Scholar 

  • Buisson, L., W. Thuiller, N. Casajus, S. Lek & G. Grenouillet, 2010. Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16: 1145–1157.

    Article  Google Scholar 

  • Cianfrani, C., G. Le Lay, L. Maiorano, H. F. Satizabal & A. Loy, 2011. Adapting global conservation strategies to climate change at the European scale: the otter as a flagship species. Biological Conservation 144: 2068–2080.

    Article  Google Scholar 

  • Cleary, R. E., 1956. Observations on factors affecting smallmouth bass production in Iowa. The Journal of Wildlife Management 20: 353–359.

    Article  Google Scholar 

  • Comte, L., L. Buisson, M. Daufresne & G. Grenouillet, 2013. Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology 58: 625–639.

    Article  Google Scholar 

  • Coutant, C. C., 1977. Compilation of temperature preference data. Journal of the Fisheries Research Board of Canada 34: 739–745.

    Article  Google Scholar 

  • Crimmins, S. M., S. Z. Dobrowski & A. R. Mynsberge, 2013. Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling 266: 126–130.

    Article  Google Scholar 

  • Dawson, T. P., S. T. Jackson, J. I. House, I. C. Prentice & G. M. Mace, 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332: 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Diniz-Filho, J. A. F., L. M. Bini, T. F. Rangel, R. D. Loyola, C. Hof, D. Nogues-Bravo & M. B. Araujo, 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover of climate change. Ecography 32: 897–906.

    Article  Google Scholar 

  • Dodds, W. K., K. Gido, M. R. Whiles, K. M. Fritz & W. J. Matthews, 2004. Life on the edge: the ecology of great plains prairie streams. BioScience 54: 205–216.

    Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Eaton, J. G. & R. M. Scheller, 1996. Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography 41: 1109–1115.

    Article  Google Scholar 

  • Elith, J. & J. R. Leathwick, 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics 40: 677–697.

    Article  Google Scholar 

  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. Overton, A. Townsend Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz & N. E. Zimmerman, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Article  Google Scholar 

  • Esselman, P. C., D. M. Infante, L. Wang, A. Cooper & W. W. Taylor, 2011. An initial assessment of integrated landscape disturbance on river fish habitats in the conterminous United States. Restoration Ecology 23: 133–151.

    Article  Google Scholar 

  • Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.

    Article  Google Scholar 

  • Fischer, J. R. & C. P. Paukert, 2008a. Historical and current environmental influences on an endemic Great Plains fish. American Midland Naturalist 159: 364–377.

    Article  Google Scholar 

  • Fischer, J. R. & C. P. Paukert, 2008b. Habitat relationships with fish assemblages in minimally disturbed Great Plains regions. Ecology of Freshwater Fish 17: 597–609.

    Article  Google Scholar 

  • Franklin, J., 2009. Mapping Species Distribution: Spatial Inference and Prediction. Cambridge University Press, Cambridge.

    Google Scholar 

  • Franklin, J., K. E. Wejnert, S. A. Hathaway, C. J. Rochester & R. N. Fisher, 2009. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions 15: 167–177.

    Article  Google Scholar 

  • Grenouillet, G., L. Buisson, N. Casajus & S. Lek, 2011. Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34: 9–17.

    Article  Google Scholar 

  • Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.

    Article  Google Scholar 

  • Guisan, A. & N. E. Zimmerman, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.

    Article  Google Scholar 

  • Guisan, A., C. H. Graham, J. Elith, F. Huettmann & Group, N.S.D.M, 2007. Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions 13: 332–340.

    Article  Google Scholar 

  • Heimann, D.C., Licher, S.S. & Schalk, G.K. (2007) Effects of impoundments and land-cover changes on streamflows and selected fish habitat in the Upper Osage River Basin, Missouri and Kansas. Scientific Investigations Report 2007–5175. U.S. Geological Survey: 96 pp.

  • Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    Article  PubMed  Google Scholar 

  • Hernandez, P. A., C. H. Graham, L. L. Master & D. L. Albert, 2006. The effect of sample size and species characteristics on performance of different species distribution models. Ecography 29: 773–785.

    Article  Google Scholar 

  • Hokanson, K. E. F., 1977. Temperature requirements of some percids and adaptations to the seasonal temperature cycle. Journal of the Fisheries Board of Canada 34: 1524–1550.

    Article  Google Scholar 

  • Huntley, B., R. E. Green, T. C. Collingham, J. K. Hill, S. G. Willis, P. J. Bartlein, W. Cramer & W. J. M. Hagemeijer, 2004. The performance of models relating species geographical distributions to climate is independent of trophic level. Ecological Letters 7: 417–426.

    Article  Google Scholar 

  • Jackson, D. A., P. R. Peres-Neto & J. D. Olden, 2001. What controls who is where in freshwater fish communities—the role of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Science 58: 157–170.

    Google Scholar 

  • Kadmon, R., O. Farber & A. Danin, 2003. A systematic analysis of factors affecting the performance of climatic envelope models. Ecological Applications 13: 853–867.

    Article  Google Scholar 

  • Kearney, M. & W. Porter, 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12: 334–350.

    Article  PubMed  Google Scholar 

  • Kostyack, J., J. J. Lawler, J. D. Olden & J. M. Scott, 2011. Beyond reserves and corridors: policy solutions to facilitate the movement of plants and animals in a changing climate. BioScience 61: 713–719.

    Article  Google Scholar 

  • Lassalle, G., M. Beguer, L. Beaulaton & E. Rochard, 2008. Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biological Conservation 141: 1105–1118.

    Article  Google Scholar 

  • Labay, B., A. E. Cohen, B. Sissel, D. A. Hendrickson, F. D. Martin & S. Sarkar, 2011. Assessing historical fish community composition using surveys, historical collection data, and species distribution models. PLoS One 6: e25145.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavergne, S., N. Mouquet, W. Thuiller & O. Ronce, 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution and Systematics 41: 321–350.

    Article  Google Scholar 

  • Lawler, J. J. & J. D. Olden, 2011. Reframing the debate over managed relocation. Frontiers in Ecology and the Environment 9: 569–574.

    Article  Google Scholar 

  • Leathwick, J. R., J. Elith & T. Hastie, 2006. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling 199: 188–196.

    Article  Google Scholar 

  • Leathwick, J. R., D. Rowe, J. Richardson, J. Elith & T. Hastie, 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshwater Biology 50: 2034–2052.

    Article  Google Scholar 

  • Leathwick, J. R., J. Elith, W. L. Chadderton, D. Rowe & T. Hastie, 2008. Dispersal, disturbance and the contrasting biogeographies of New Zealand’s diadromous and non-diadromous fish species. Journal of Biogeography 35: 1481–1497.

    Article  Google Scholar 

  • Leopold, L., 1994. The View of the River. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Lyons, J., J. S. Stewart & M. Mitro, 2010. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA. Journal of Fish Biology 77: 1867–1898.

    Article  CAS  PubMed  Google Scholar 

  • Maloney, K. O., D. E. Weller, D. E. Michaelson & P. J. Ciccotto, 2013. Species distribution models of freshwater stream fishes in Maryland and their implications for management. Environmental Modeling & Assessment 18: 1–12.

    Article  Google Scholar 

  • Manel, S., H. C. Williams & S. J. Omerod, 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931.

    Article  Google Scholar 

  • Marmion, M., M. Parvianinen, M. Luoto, R. K. Heikkinen & W. Thuiller, 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59–69.

    Article  Google Scholar 

  • Mawdsley, J. R., R. O’Malley & D. S. Ojima, 2009. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology 23: 1080–1089.

    Article  PubMed  Google Scholar 

  • McPherson, J. M. & W. Jetz, 2007. Effects of species’ ecology on the accuracy of distribution models. Ecography 30: 135–151.

    Google Scholar 

  • McPherson, J. M., W. Jetz & D. J. Rogers, 2004. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology 41: 811–823.

    Article  Google Scholar 

  • Mitchell, M. S., R. A. Lancia & J. A. Gerwin, 2001. Using landscape-level data to predict the distribution of birds on a managed forest: effects of scale. Ecological Applications 11: 1692–1708.

    Article  Google Scholar 

  • Morin, A. & W. Thuiller, 2009. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90: 1301–1313.

    Article  PubMed  Google Scholar 

  • NatureServe, 2010. Digital Distribution Maps of the Freshwater Fishes in the Conterminous United States, Version 3.0. Natureserve, Arlington, VA.

    Google Scholar 

  • Olden, J. D., M. K. Kennard, J. J. Lawler & N. L. Poff, 2011. Challenges and opportunities in implementing managed relocation for conservation of freshwater species. Conservation Biology 25: 40–47.

    Article  PubMed  Google Scholar 

  • Ostrand, K. G. & G. R. Wilde, 2001. Temperature, dissolved oxygen, and salinity tolerances of five prairie stream fishes and their role in explaining fish assemblage patterns. Transactions of the American Fisheries Society 130: 742–749.

    Article  Google Scholar 

  • Pasbrig, C. A., K. D. Koupal, S. Schainost & W. W. Hoback, 2012. Changes in range-wide distribution of plains topminnow Fundulus sciadicus. Endangered Species Research 16: 235–247.

    Article  Google Scholar 

  • Pearce, J. & S. Ferrier, 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133: 225–245.

    Article  Google Scholar 

  • Pearce, J., S. Ferrier & D. Scotts, 2001. An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South wales. Journal of Environmental Management 62: 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, R. G., W. Thuiller, M. B. Araujo, E. Martinez-Meyer, L. Brotons, C. McClean, L. Miles, P. Segurado, T. P. Dawson & D. C. Lees, 2006. Model-based uncertainty in species range prediction. Journal of Biogeography 33: 1704–1711.

    Article  Google Scholar 

  • Perkin, J. S. & K. B. Gido, 2011. Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries 26: 371–383.

    Article  Google Scholar 

  • Peterson, J. T. & T. J. Kwak, 1999. Modeling the effects of land use and climate change on riverine smallmouth bass. Ecological Applications 9: 1391–1404.

    Article  Google Scholar 

  • Poff, N. L. & J. D. Allan, 1995. Functional organization of stream fish assemblages in relation to hyrological variability. Ecology 76: 606–627.

    Article  Google Scholar 

  • Poulos, H. M., B. Chernoff, P. L. Fuller & D. Butman, 2012. Ensemble forecasting of potential habitat for three invasive fishes. Aquatic Invasions 7: 59–72.

    Article  Google Scholar 

  • Quist, M. C., W. A. Hubert & F. J. Rahel, 2005. Fish assemblage structure following impoundment of a Great Plains river. Western North American Naturalist 65: 53–63.

    Google Scholar 

  • Rapacciuolo, G., D. B. Roy, S. Gillings, R. Fox, K. Walker & A. Purvis, 2012. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change. PLoS One 7: e40212.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segurado, P. & M. B. Araujo, 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography 31: 1555–1568.

    Article  Google Scholar 

  • Sharma, S., M. J. Vander Zanden, J. J. Magnuson & J. Lyons, 2011. Comparing climate change and species invasions as drivers of coldwater fish population extirpations. PLoS One 6: e22906.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simonson, T. D. & W. A. Swenson, 1990. Critical stream velocities for young-of-year smallmouth bass in relation to habitat use. Transactions of the American Fisheries Society 119: 902–909.

    Article  Google Scholar 

  • Smale, M. A. & C. F. Rabeni, 1995. Hypoxia and hyperthermia tolerances of headwater stream fishes. Transactions of the American Fisheries Society 124: 698–710.

    Article  Google Scholar 

  • Smith, A. B., M. J. Santos, M. S. Koo, K. M. C. Rowe, K. C. Rowe, J. L. Patton, J. D. Perrine, S. R. Beissinger & C. Moritz, 2013. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36: 1017–1031.

    Article  Google Scholar 

  • Smith, S. M., J. S. Odenkirk & S. J. Reeser, 1995. Smallmouth bass recruitment variability and its relation to stream discharge in three Virginia rivers. North American Journal of Fisheries Management 25: 1112–1121.

    Article  Google Scholar 

  • Steen, P. J., M. J. Wiley & J. S. Schaeffer, 2010. Predicting future changes in Muskegon river watershed game fish distributions under future land cover alteration and climate change scenarios. Transactions of the American Fisheries Society 139: 396–412.

    Article  Google Scholar 

  • Stefan, H. G. & E. B. Preud’homme, 1993. Stream temperature estimation from air temperature. Journal of the American Water Resources Association 29: 27–45.

    Article  Google Scholar 

  • Syphard, A. D. & J. Franklin, 2010. Species traits affect the performance of species distribution models for plants in southern California. Journal of Vegetation Science 21: 177–189.

    Article  Google Scholar 

  • Thuiller, W., 2007. Climate change and the ecologist. Nature 448: 550–552.

    Article  CAS  PubMed  Google Scholar 

  • Thuiller, W., B. Lafourcade, R. Engler & M. B. Araujo, 2009. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32: 369–373.

    Article  Google Scholar 

  • Tobin, B.D. & D.J. Weary, 2004 Digital engineering aspects of karst map: a GIS version of Davies, W.E., Simpson, J.H., Ohlmacher, G.C., Kirk, W.S., and Newton, E.G., 1984, Enginering aspects of karstL U.S. Geological Survey, National Atlas of the United States of America, Scale 1:7,500,000. Available at: http://pubs.usgs.gov/of/2004/1352/. Accessed 2012.

  • Townsend Peterson, A., 2006. Uses and requirements of ecological niche models and relation distributional models. Biodiversity Informatics 3: 59–72.

    Google Scholar 

  • U.S. Geological Survey 2013 Biodiversity Information Serving Our Nation (BISON). Available at: (accessed 2014).

  • Van der Putten, W. H., M. Macel & M. E. Visser, 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2025–2034.

    Article  Google Scholar 

  • Vanni, M., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology, Evolution and Systematics 33: 341–370.

    Article  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl & R. Gatti, 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22: 6–12.

    Article  Google Scholar 

  • Wenger, S. J. & J. D. Olden, 2012. Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods in Ecology and Evolution 3: 260–267.

    Article  Google Scholar 

  • Wenger, S. J., D. J. Isaak, C. H. Luce, H. M. Neville, K. D. Fausch, J. B. Dunham, D. C. Dauwalter, M. K. Young, M. M. Elsner, B. E. Rieman, A. F. Hamlet & J. E. Williams, 2011. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences of the United States of America 108: 14175–14180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wisz, M. S., R. J. Hijmans, J. Li, A. T. Peterson, C. H. Graham, A. Guisan & Group, N.P.S.D.W, 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763–773.

    Article  Google Scholar 

  • Zorn, T. G., P. W. Seelbach & M. J. Wiley, 2002. Distributions of stream fishes and their relationship to stream size and hydrology in Michigan’s Lower Peninsula. Transactions of the American Fisheries Society 131: 70–85.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the state natural resource agencies that shared fish data with us to make this project feasible: Arkansas Department of Environmental Quality, Illinois Department of Natural Resources, Kansas Department of Wildlife and Parks, Minnesota Department of Natural Resources, Minnesota Pollution Control Agency, Missouri Department of Conservation, Missouri Department of Natural Resources, Nebraska Game and Fish Commission, North Dakota Department of Health, North Dakota Game, Fish and Parks, and Wisconsin Department of Natural Resources. We also thank Dr. Justin Schoof for providing historical climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen L. Bouska.

Additional information

Handling editor: Begoña Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouska, K.L., Whitledge, G.W. & Lant, C. Development and evaluation of species distribution models for fourteen native central U.S. fish species. Hydrobiologia 747, 159–176 (2015). https://doi.org/10.1007/s10750-014-2134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2134-8

Keywords

Navigation