Skip to main content

Advertisement

Log in

Microbial pelagic metabolism and CDOM characterization in a phytoplankton-dominated versus a macrophyte-dominated shallow lake

  • ARGENTINE PAMPEAN SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dominant primary producer in macrophyte- or phytoplankton-dominated shallow lakes might imply differences in dissolved organic carbon (DOC) composition. We compared chromophoric dissolved organic matter (CDOM), plankton respiration (R), and bacterial (BP) and primary production (PP), in two contrasting shallow lakes. We hypothesized that DOC from the macrophyte-dominated lake would be qualitatively inferior, so that it can support a lower yield than DOC from the phytoplankton-dominated one. Macrophyte-dominated lake had more humic and aromatic CDOM, though molecular weight was similar in both lakes. A clear synchronism between lakes was observed in mean depth and several CDOM absorption coefficients, suggesting an external driver of the variation in DOC concentration and CDOM quality. The positive BP-PP and BP-Chl-a correlations in the macrophyte-dominated lake point out to a dependence of bacteria on phytoplankton for a supply of labile DOC. In turn, BP in the phytoplankton-dominated lake was balanced with grazing by HF (heterotrophic flagellates). The significantly higher HB:DOC and HF:DOC carbon ratios in the phytoplankton-dominated lake also suggest that better DOC quality would mean relatively more efficient C transfer to higher trophic levels. According to PP:BP and PP:R ratios both lakes should be considered autotrophic, although the macrophyte-dominated lake would be comparatively more heterotrophic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitkenhead-Peterson, J. A., W. H. McDowell, J. C. Neff, E. G. F. Stuart & S. L. Robert, 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego: 71–91.

    Google Scholar 

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • Alonso-Sáez, L., J. Arístegui, J. Pinhassi, L. Gómez-Consarnau, J. M. Gonzá́lez, D. Vaqué, S. Agustí & J. M. Gasol, 2007. Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean. Aquatic Microbial Ecology 46: 43–53.

    Article  Google Scholar 

  • Alonso-Sáez, L., E. Vázquez-Domínguez, C. Cardelús, J. Pinhassi, M. M. Sala, I. Lekunberri, V. Balagué, M. Vila-Costa, F. Unrein, R. Massana, R. Simó & J. M. Gasol, 2008. Factors controlling the year-round variability in carbon flux through bacteria in a coastal marine system. Ecosystems 11: 397–409.

    Article  Google Scholar 

  • Anderson, N. J. & C. A. Stedmon, 2007. The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshwater Biology 52: 280–289.

    Article  CAS  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Apple, J. K. & P. A. del Giorgio, 2007. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary. The ISME Journal 1: 729–742.

    Article  CAS  PubMed  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field & J. S. Gra, 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Series 10: 257–263.

    Article  Google Scholar 

  • Baptista, I., A. L. Santos, A. Cunha, N. C. M. Gomes & A. Almeida, 2011. Bacteria biomass production in an estuarine system: high variability of leucine conversion factors and changes in bacterial community structure during incubation. Aquatic Microbial Ecology 62: 299–310.

    Article  Google Scholar 

  • Berggren, M., H. Laudon, M. Haei, L. Strom & M. Jansson, 2010a. Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. ISME J. 4: 408–416.

    Article  CAS  PubMed  Google Scholar 

  • Berggren, M., L. Ström, H. Laudon, J. Karlsson, A. Jonsson, R. Giesler, et al., 2010b. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. Ecol. Lett. 13: 870–880.

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson, S. & J. B. Jones, 2003. Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter. Academic Press, San Diego: 3–24.

    Chapter  Google Scholar 

  • Billen, G., P. Servais & S. Becquevort, 1990. Dynamics of bacteriaplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control? Hydrobiologia 207: 37–42.

    Article  Google Scholar 

  • Bjornsen, P. K. & J. Kuparinen, 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Marine Ecology Progress Series 71: 185–194.

    Article  Google Scholar 

  • Børsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series 36: 171–175.

    Article  Google Scholar 

  • Bouvy, M., R. Arfi, P. Cecchi, D. Corbin, M. Pagano, L. Saint-Jean & S. Thomas, 1998. Trophic coupling between bacterial and phytoplanktonic compartments in shallow tropical reservoirs (Ivory Coast, West Africa). Aquatic Microbial Ecology 15: 25–37.

    Article  Google Scholar 

  • Bracchini, L., A. Cózar, A. M. Dattilo, S. A. Loiselle, A. Tognazzi, N. Azza & C. Rossi, 2006. The role of wetlands in the chromophoric dissolved organic matter release and its relation to aquatic ecosystems optical properties. A case of study: Katonga and Bunjako Bays (Victoria Lake; Uganda). Chemosphere 63: 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  • Briand, E., O. Pringault, S. Jacquet & J.-P. Torreton, 2004. The use of oxygen microprobes to measure bacterial respiration for determining bacterioplankton growth efficiency. Limnology and Oceanography: Methods 2: 406–416.

    Article  Google Scholar 

  • Buesing, N. & J. Marxsen, 2005. Theoretical and empirical conversion factors for determining bacterial production in freshwater sediments via leucine incorporation. Limnology and Oceanography Methods 3: 101–107.

    Article  CAS  Google Scholar 

  • Calvo-Díaz, A. & X. A. G. Morán, 2009. Empirical leucine-to-carbon conversion factors for estimating heterotrophic bacterial production: seasonality and predictability in a temperate coastal ecosystem. Applied and Environmental Microbiology 75: 3216–3221.

    Article  PubMed Central  PubMed  Google Scholar 

  • Carpenter, S. R., J. J. Cole, M. L. Pace, M. Van de Bogert, D. L. Bade, D. Bastviken, et al., 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86: 2737–2750.

    Article  Google Scholar 

  • Chen, Y., N. Senesi & M. Schnitzer, 1977. Information provided on humic substances by E4:E6 ratios. Soil Science Society of America Journal 41: 352–358.

    Article  CAS  Google Scholar 

  • Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. Van de Bogert, J. L. Kitchell & J. R. Hodgson, 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.

    Article  PubMed  Google Scholar 

  • Cole, J. J., S. R. Carpenter, J. Kitchell, M. L. Pace, C. T. Solomon & B. Weidel, 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the USA 108: 1975–1980.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dangavs, N. V., 1976. Descripción sistemática de los parámetros morfométricos considerados en las lagunas pampásicas. Limnobios 1(2): 35–59.

    Google Scholar 

  • del Giorgio, P. A. & R. E. I. Newell, 2012. Phosphorus and DOC availability influence the partitioning between bacterioplankton production and respiration in tidal marsh ecosystems. Environmental Microbiology 14: 1296–1307.

    Article  PubMed  Google Scholar 

  • Ducklow, H. W., 1992. Factors regulating bottom-up control of bacteria biomass in open ocean plankton communities. Archiv für Hydrobiologie 37: 207–217.

    Google Scholar 

  • Eiler, A., A. H. Farnleitner, T. C. Zechmeister, A. Herzig, C. Hurban, W. Wesner, R. Krachler, B. Velimirov & A. K. T. Kirschner, 2003. Factors controlling extremely productive heterotrophic bacterial communities in shallow soda pools. Microbial Ecology 46: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Farjalla, V. F., B. M. Faria & F. A. Esteves, 2002. The relationship between DOC and planktonic bacteria in tropical coastal lagoons. Archiv für Hydrobiologie 156: 97–119.

    Article  Google Scholar 

  • Farjalla, V. F., A. M. Amado, A. L. Suhett & F. Meirelles-Pereira, 2009. DOC removal paradigms in highly humic aquatic ecosystems. Environmental Science and Pollution Research 16: 531–538.

    Article  CAS  PubMed  Google Scholar 

  • Fermani, P., N. Diovisalvi, A. Torremorell, L. Lagomarsino, H. E. Zagarese & F. Unrein, 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130.

    Article  CAS  Google Scholar 

  • Fermani, P., A. Torremorell, L. Lagomarsino, R. Escaray, F. Unrein & G. Pérez, 2014. Microbial abundance patterns along a transparency gradient suggest a weak coupling between heterotrophic bacteria and flagellates in eutrophic shallow Pampean lakes. Hydrobiologia 1–21.

  • Gao, G., B. Qin, R. Sommaruga & R. Psenner, 2007. The bacterioplankton of Lake Taihu, China: abundance, biomass, and production. Hydrobiologia 581: 177–188.

    Article  Google Scholar 

  • Geraldi, A. M., M. C. Piccolo & G. M. E. Perillo, 2011. El rol de las lagunas bonaerenses en el paisaje pampeano. Ciencia Hoy 21: 9–14.

    Google Scholar 

  • Guillemette, F., S. L. McCallister & P. A. del Giorgio, 2013. Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. Journal of Geophysical Research: Biogeosciences 118: 963–973.

    CAS  Google Scholar 

  • Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber & K. Mopper, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53: 955–969.

    Article  Google Scholar 

  • Holm-Hansen, O. & E. W. Helbling, 1995. Técnicas para la medición de la productividad primaria en el fitoplancton. In Alveal, K., M. E. Ferrario, E. C. Oliveira & E. Sar (eds), Manual de Métodos Ficológicos. Universidad de Concepción, Concepción: 329–350.

    Google Scholar 

  • Huss, A. A. & J. D. Wehr, 2004. Strong indirect effects of a submersed aquatic macrophyte, Vallisneria americana, on bacterioplankton densities in a mesotrophic Lake. Microbial Ecology 47: 305–315.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, M., A. K. Bergström, P. Blomqvist & S. Drakare, 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250–3255.

    Article  Google Scholar 

  • Jørgensen, N. O. G., 1992. Incorporation of [3H]leucine and [3H]valine into protein of freshwater bacteria: uptake kinetics and intracellular isotope dilution. Applied and Environmental Microbiology 58: 3638–3646.

    PubMed Central  PubMed  Google Scholar 

  • Kamjunke, N., W. Böing & H. Voigt, 1997. Bacterial and primary production under hypertrophic conditions. Aquatic Microbial Ecology 13: 29–35.

    Article  Google Scholar 

  • Kamjunke, N., C. Bohn & J. Grey, 2006. Utilisation of dissolved organic carbon from different sources by pelagic bacteria in an acidic mining lake. Archiv für Hydrobiologie 165: 355–364.

    Article  CAS  Google Scholar 

  • Karlsson, J., 2007. Different carbon support for respiration and secondary production in unproductive lakes. Oikos 116: 1691–1696.

    Article  CAS  Google Scholar 

  • Kemp, P. F., B. F. Sherr, B. E. Sherr & J. J. Cole, 1993. Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Kirchman, D. L. & E. R. K’nees Hodson, 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic ecosystems. Applied and Environmental Microbiology 49: 599–607.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirk, J., 1994. Characteristics of the light field in highly turbid waters: a Monte Carlo study. Limnology and Oceanography 39: 702–706.

    Article  Google Scholar 

  • Kisand, V. T., T. Nõges & P. Zingel, 1998. Diel dynamics of bacterioplankton activity in eutrophic shallow Lake Võrtsjärv, Estonia. Hydrobiologia 380(1–3): 93–102.

    Article  Google Scholar 

  • Kranewitter, A. V., 2010. Estudio intensivo de la diná́mica temporal del picoplancton de la laguna Chascomú́s. B.Sc. Thesis, University of Buenos Aires, Argentina.

  • Kritzberg, E., J. J. Cole, M. L. Pace, W. Granéli & D. L. Bade, 2004. Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake 13C addition experiments. Limnology and Oceanography 49: 588–596.

    Article  CAS  Google Scholar 

  • Kritzberg, E. S., J. J. Cole, M. M. Pace & W. Granéli, 2005. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology 38: 103–111.

    Article  Google Scholar 

  • Kritzberg, E. S., J. M. Arrieta & C. M. Duarte, 2010. Temperature and phosphorus regulating carbon flux through bacteria in a coastal marine system. Aquatic Microbial Ecology 58: 141–151.

    Article  Google Scholar 

  • Lauster, G. H., P. C. Hanson & T. K. Kratz, 2006. Gross primary production and respiration differences among littoral and pelagic habitats in northern Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences 63: 1130–1141.

    Article  Google Scholar 

  • Lemée, R., E. Rochelle-Newall, F. Van Wambeke, M.-D. Pizay, P. Rinaldi & J.-P. Gattuso, 2002. Seasonal variation of bacterial production respiration and growth efficiency in the open NW Mediterranean Sea. Aquatic Microbial Ecology 29: 227–237.

    Article  Google Scholar 

  • Loferer-Krößbacher, M., J. Klima & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl. Environ. Microbiol. 64: 688–694.

    PubMed Central  PubMed  Google Scholar 

  • Marker, A. F. H., A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in freshwater and standardization of methods: conclusions and recommendations. Archiv für Hydrobiologie 14: 91–106.

    CAS  Google Scholar 

  • Massana, R., J. M. Gasol, P. K. Bjørnsen, N. Blackburn, Å. Hagstrøm, S. Hietanen, B. H. Hygum, J. Kuparinen & C. Pedrós Alió, 1997. Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Scientia Marina 61: 397–407.

    Google Scholar 

  • Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Middelboe, M. & M. Søndergaard, 1993. Bacterioplankton growth yield: a close coupling to substrate lability and beta-glucosidase activity. Appl. Environ. Microbiol. 59: 3916–3921.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moran, M. A. & R. E. Hodson, 1992. Contributions of three subsystems of a freshwater marsh to total bacterial secondary productivity. Microbial Ecology 24: 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Pace, M. L. & J. J. Cole, 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnology and Oceanography 47(2): 333–342.

    Article  CAS  Google Scholar 

  • Pace, M. L. & Y. Prairie, 2005. Respiration in lakes. In del Giorgio, P. A. & P Jle B Williams (eds), Respiration in Aquatic Ecosystems. Oxford University Press, New York: 123–131.

    Google Scholar 

  • Pérez, G. L., A. Torremorell, J. Bustingorry, R. Escaray, P. Pérez, M. Diéguez & H. Zagarese, 2010. Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica 40: 30–39.

    Article  Google Scholar 

  • Peuravouri, J. & K. Pihlaja, 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta 337: 133–149.

    Article  Google Scholar 

  • Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Pulido-Villena, E. & I. Reche, 2003. Exploring bacterioplankton growth and protein synthesis to determine conversion factors across a gradient of dissolved organic matter. Microbial ecology 46: 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, J. B., L. Godbout & M. Schallenberg, 1989. The humic content of lake water and watershed and lake morphometry. Limnology and Oceanography 34: 1336–1343.

    Article  CAS  Google Scholar 

  • Rebsdorf, A., 1972. The Carbon Dioxide System of Freshwater. A Set of Tables for Easy Computation of Total Carbon Dioxide and Other Components of the Carbon Dioxide System. Freshwater Biological Laboratory, Hillerod.

    Google Scholar 

  • Reinthaler, T. & G. J. Herndl, 2005. Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the Southern North Sea. Aquatic Microbial Ecology 39: 7–16.

    Article  Google Scholar 

  • Reitner, B., A. Herzig & G. J. Herndl, 1999. Dynamics in bacterioplankton production in a shallow, temperate lake (Lake Neusiedl, Austria): evidence for dependence on macrophyte production rather than on phytoplankton. Aquatic Microbial Ecology 19: 245–254.

    Article  Google Scholar 

  • Robarts, R. D., M. T. Arts, M. S. Evans & M. J. Waiser, 1994. The coupling of heterotrophic bacterial in a hypertrophic, shallow prairie lake. Canadian Journal of Fisheries and Aquatic Sciences 51: 2219–2227.

    Article  Google Scholar 

  • Robarts, R. D., M. T. Arts, M. S. Evans & M. J. Waiser, 1999. The coupling of bacterial and phytoplankton production in Redberry Lake, Saskatchewan- an Oligotrophic, Prairie, Saline Lake with high DOC Concentration. Japanese Journal of Limnology 60: 11–27.

    Article  CAS  Google Scholar 

  • Rooney, N. & J. Kalff, 2003a. Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial production. Ecosystems 6: 797–807.

    Article  CAS  Google Scholar 

  • Rooney, N. & J. Kalff, 2003b. Interactions among epilimnetic phosphorus, phytoplankton biomass and bacterioplankton metabolism in lakes of varying submerged macrophyte cover. Hydrobiologia Springer 501: 75–81.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, J. H., 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.

    Article  CAS  Google Scholar 

  • Sherry, N. D., B. Imanian, K. Sugimoto, P. W. Boyd & P. J. Harrison, 2002. Seasonal and interannual trends in heterotrophic bacterial processes between 1995 and 1999 in the subarctic NE Pacific. Deep-See Research II 49: 5775–5791.

    Article  CAS  Google Scholar 

  • Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6: 107–114.

    Google Scholar 

  • Smith, E. M. & Y. T. Prairie, 2004. Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol. Oceanogr. 49: 137–147.

    Article  CAS  Google Scholar 

  • Sommaruga, R., 1995. Microbial and classical food webs: a visit to a hypertrophic lake. FEMS microbiology ecology 17: 257–270.

    Article  CAS  Google Scholar 

  • Stanley, E. H., M. D. Johnson & A. K. Ward, 2003. Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland. Limnology and Oceanography 48: 1101–1111.

    Article  CAS  Google Scholar 

  • Steeman-Nielsen, E., 1952. The use of radiocarbon (14C) for measuring organic production in the sea. Journal du Conseil International pour l’Exploration de la Mer 18: 117–140.

    Article  Google Scholar 

  • Summers, R. S., P. K. Cornel & P. V. Roberts, 1987. Molecular size distribution and spectroscopic characterization of humic substances. Science of the Total Environment 62: 27–37.

    Article  CAS  Google Scholar 

  • They, N. H., D. Motta Marques, E. Jeppesen & M. Søndergaard, 2010. Bacterioplankton in the littoral and pelagic zones of subtropical shallow lakes. Hydrobiologia 646: 311–326.

    Article  Google Scholar 

  • Torremorell, A., J. Bustigorry, R. Escaray & H. E. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1998. Degradation of dissolved organic matter in humic waters by bacteria. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic Humic Substances. Springer-Verlag, Berlin: 259–283.

    Chapter  Google Scholar 

  • Tulonen, T., 1993. Bacterial production in a mesohumic lake estimated from [14C] leucine incorporation rate. Microbial Ecology 26: 201–217.

    Article  CAS  PubMed  Google Scholar 

  • Unrein, F., R. Massana, L. Alonso-Sáez & J. M. Gasol, 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnology and Oceanography 52: 456–469.

    Article  Google Scholar 

  • Vaqué, D., J. M. Gasol & C. Marrasé, 1994. Grazing rates on bacteria: The significance of methodology and ecological factors. Marine Ecology Progress Series 109: 263–227.

    Google Scholar 

  • Waiser, M. J. & R. D. Robarts, 2004. Net heterotrophy in productive prairie wetlands with high DOC concentrations. Aquatic Microbial Ecology Inter-Research 34: 279–290.

    Article  Google Scholar 

  • Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii & K. Mopper, 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37: 4702–4708.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, New York.

    Google Scholar 

  • Worden, A. Z., J. K. Nolan & B. Palenik, 2004. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnology and oceanography 49: 168–179.

    Article  CAS  Google Scholar 

  • Zhang, Y., X. Liu, M. Wang & B. Qin, 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry 55: 26–37.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the Argentine network for the assessment and monitoring of Pampean shallow lakes (PAMPA2—CONICET), ANPCyT (PICT-2011-1029), CONICET (PIP-01301), and UNSAM (SC08/043). We thank Roberto Escaray for field assistance and nitrogen estimations, Carla Passerini for the measurement of primary and bacterial productions, and Patricia Rodriguez for help with the scintillation counter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Unrein.

Additional information

Guest editors: I. Izaguirre, L. A. Miranda, G. M. E. Perillo, M. C. Piccolo & H. E. Zagarese / Shallow Lakes from the Central Plains of Argentina

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torremorell, A., Pérez, G., Lagomarsino, L. et al. Microbial pelagic metabolism and CDOM characterization in a phytoplankton-dominated versus a macrophyte-dominated shallow lake. Hydrobiologia 752, 203–221 (2015). https://doi.org/10.1007/s10750-014-2057-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2057-4

Keywords

Navigation