Skip to main content
Log in

Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Duckweeds are a family of aquatic flowering plants that have a high potential for environmental remediation and biofuel manufacture. Two hundred and twenty clones of duckweeds were collected in Hainan Island, China. Based on morphological and phylogenetic analyses of the chloroplast ribosomal protein S16 intron (rps16) and atpF-atpH intergenic spacer sequences, these clones were classified into four species belonging to four genera: Lemna aequinoctialis, Spirodela polyrhiza, Wolffia globosa, and Landoltia punctata. Eight community types including single-, bi-, and/or tri-species communities were observed. L. aequinoctialis was the most widely distributed of the four species. W. globosa has the highest genetic diversity followed by L. aequinoctialis, whereas S. polyrhiza and L. punctata did not show any significant diversity. Duckweeds collected from the south of Hainan had higher diversity than those from the north. Moreover, very high rates of transversional nucleotide substitutions were found in the rps16 sequences of L. aequinoctialis and W. globosa, which make these duckweeds special with respect to nucleotide substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarado, S., M. Guedez, M. P. Lue-Meru, G. Nelson, A. Alvaro, A. C. Jesus & Z. Gyula, 2008. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresource Technology 99(17): 8436–8440.

    Article  CAS  PubMed  Google Scholar 

  • Appenroth, K.-J., N. Borisjuk & E. Lam, 2013. Telling duckweed apart: genotyping technologies for the Lemnaceae. Chinese Journal of Applied Environmental Biology 19(1): 1–10.

    Article  CAS  Google Scholar 

  • Bog, M., H. Baumbach, U. Schween, F. Hellwig, E. Landolt & K.-J. Appenroth, 2010. Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 232(3): 609–619.

    Article  CAS  PubMed  Google Scholar 

  • Bog, M., P. Schneider, F. Hellwig, S. Sachse, E. Z. Kochieva, E. Martyrosian, E. Landolt & K. J. Appenroth, 2013. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 237(1): 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, J. J. & A.-M. Stomp, 2009. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. CLEAN – Soil, Air Water 37(1): 17–26.

    Article  CAS  Google Scholar 

  • Collins, D. W. & T. H. Jukes, 1994. Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics 20(3): 386–396.

    Article  CAS  PubMed  Google Scholar 

  • Debusk, T. A., J. H. Ryther, M. D. Hanisak & L. D. Williams, 1981. Effects of seasonality and plant density on the productivity of some fresh water macrophytes. Aquatic Botany 10: 133–142.

    Article  Google Scholar 

  • Diao, Z. S., 1990. Aquatic weeds of China. Chongqing Press, Chongqing. (in Chinese).

    Google Scholar 

  • Eid, M. A. A., M. A. E. Kandil, E. B. Moursy & G. E. M. Sayed, 1992. Effect of the duckweed, Lemna minor vegetations on the mosquito Culex pipiens pipiens. Insect Science and its Applications 13: 357–361.

    Google Scholar 

  • Ge, X., N. Zhang, G. C. Phillips & J. Xu, 2012. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresource Technology 124: 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, D. R. & D. I. Arnon, 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347: 1–32.

    Google Scholar 

  • Hou, W., X. Chen, G. Song, Q. Wang & C. Chi Chang, 2007. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry 45(1): 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, S., 1999. Duckweed Aquaculture: Potentials, Possibilities and Limitations for Combined Wastewater Treatment and Animal Feed Production in Developing Countries. SANDEC, Duebendorf, Switzerland, Report No. 6/99.

  • Jordan, W. C., M. W. Courtney & J. E. Neigel, 1996. Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). American Journal of Botany 83(4): 430–439.

    Article  CAS  Google Scholar 

  • Lüönd, A., 1983. Das wachstum von wasserlinsen (Lemnaceae) in Abhaengigkeit des Naehrstoffangebots, insbesondere phosphor und stickstoff, Vol. 3. Veroeffentlichungen des Geobotanischen Instutes der ETH, Stiftung Ruebel, Zurich, Biosystematic investigations in the family of duckweeds (Lemnaceae).

    Google Scholar 

  • Landolt, E., 1980. Biosystematic investigations in the family of duckweeds (Lemnaceae). Vol. 1. Key to determination, Vol. 1. Veroeffentlichungen des Geobotanischen Institutes der ETH, Stiftung Ruebel, Zürich, 13–21.

  • Landolt, E., 1986. Biosystematic investigations in the family of duckweeds (Lemnaceae), Vol. 2: The family of Lemnaceae: a monographic study. – Morphology, karyology, ecology, geographic distribution, nomenclature, descriptions. Eidgenössische Technische Hochschule Zürich, Zürich.

  • Landolt, E. & R. Kandeler, 1987. Biosystematic investigations in the family of duckweeds (Lemnaceae), Vol. 4: The family of Lemnaceae: a monographic study. Eidgenössische Technische Hochschule Zürich, Zürich.

  • Les, D. H., D. J. Crawford, E. Landolt, J. D. Gabel & R. T. Kimball, 2002. Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany 27(2): 221–240.

    Google Scholar 

  • Li, T., 2002. Annual variation of meteorological radiation in Hainan Island. Chinese Journal of Environment and Meteology 11: 45–48.

    Google Scholar 

  • Li, H. Q., 2010. A hand manual on classification of spermatophytes in east China. Huadong Normal University Press, Shanghai.

    Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z. C., H. B. Sun, F. H. Wan, J. Y. Guo & G. F. Zhang, 2013. High variation in single nucleotide polymorphisms (SNPs) and insertions/deletions (Indels) in the highly invasive Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East-Asia Minor 1 (MEAM1). Neotropical Entomology 42: 521–526.

    Article  Google Scholar 

  • Mkandawire, M. & E. G. Dudel, 2005. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. The Science of the Total Environment 336(1–3): 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Nhapi, I., J. Dalu, J. Ndamba, M. A. Siebel & H. J. Gijzen, 2003. An evaluation of duckweed-based pond systems as an alternative option for decentralised treatment and reuse of wastewater in Zimbabwe. Water Science Technology 48(2): 323–330.

    CAS  PubMed  Google Scholar 

  • Ozengin, N. & A. Elmaci, 2007. Performance of duckweed (Lemna minor L.) on different types of wastewater treatment. Journal of Environmental Biology/Academy of Environmental Biology, India 28(2): 307–314.

    CAS  PubMed  Google Scholar 

  • Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schilling & R. L. Small, 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92(1): 142–166.

    Article  CAS  PubMed  Google Scholar 

  • Shen, G. X., H. Hu, D. S. Shen & Y. M. Zhu, 2004. Growing conditions of five species of duckweed for nutrient-rich wastewater treatment (in Chinese). Transactions of the CSAE 20(1): 284–287.

    Google Scholar 

  • Short, M. D., N. J. Cromar, J. B. Nixon & H. J. Fallowfield, 2007. Relative performance of duckweed ponds and rock filtration as advanced in-pond wastewater treatment processes for upgrading waste stabilisation pond effluent: a pilot study. Water Science Technology 55(11): 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Sree, K. S. & K.-J. Appenroth, 2014. Increase of starch accumulation in the duckweed Lemna minor under abiotic stress. Albanian Journal of Agricultural Sciences 13: 11–14.

    Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.

    CAS  PubMed  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., F. Zhang, W. Cui & J. Ma, 2014. Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai. China. Planta 239(6): 1299–1307.

    Article  CAS  Google Scholar 

  • Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin & D. G. Higgins, 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876–4882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, W., G. Haberer, H. Gundlach, C. Glasser, T. Nussbaumer, M. C. Luo, A. Lomsadze, M. Borodovsky, R. A. Kerstetter, J. Shanklin, D. W. Byrant, T. C. Mockler, K. J. Appenroth, J. Grimwood, J. Jenkins, J. Chow, C. Choi, C. Adam, X. H. Cao, J. Fuchs, I. Schubert, D. Rokhsar, J. Schmutz, T. P. Michael, K. F. Mayer & J. Messing, 2014. The Spirodela polyrhiza genome reveals insights into its neotenous reduction, fast growth and aquatic lifestyle. Nature Communications 5: 3311.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, W. & J. Messing, 2011. High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS One 6(9): e24670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, W., Y. Wu, Y. Yan, M. Ermakova, R. Kerstetter & J. Messing, 2010. DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biology 10: 205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y. M., F. Lu, S. S. Mao, L. Li, Q. Zhang, L. Liu, J. Cai & F. Cao, 2012. Study on diversity of duckweeds in Zhejiang Province using molecular genetics markers (in Chinese). Journal of Anhui Agricultural Sciences 40(31): 15127–15128.

    CAS  Google Scholar 

  • Watterson, G. A., 1975. On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7(2): 256–276.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X.-F., L.-J. Liu, H. Ma, Y. Liu, M.-Y. Zhou & X.-Q. Qian, 2012. Species of duckweeds in summer in Jiangsu Province and water environments they grow in. Journal of Ecology and Rural Environment 28(5): 554–558.

    Google Scholar 

  • Xu, J., J. J. Cheng & A.-M. Stomp, 2012. Growing Spirodela polyrrhiza in swine wastewater for the production of animal feed and fuel ethanol: a pilot study. CLEAN – Soil, Air. Water 40(7): 760–765.

    CAS  Google Scholar 

  • Yamaga, F., K. Washio & M. Morikawa, 2010. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environmental Science and Technology 44(16): 6470–6474.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y., J. Candreva, H. Shi, E. Ernst, R. Martienssen, J. Schwender & J. Shanklin, 2013. Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Delta6-desaturase responsible for the production of gamma-linolenic and stearidonic acids in Lemna gibba. BMC Plant Biology 13(1): 201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, H., X. Mao, J. Zhang, X. Chang & R. Jing, 2013. Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat. Plant Physiology and Biochemistry 70: 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., F. J. Zhao, Q. Huang, P. N. Williams, G. X. Sun & Y. G. Zhu, 2009. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist 182(2): 421–428.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, H., K. Appenroth, L. Landesman, A. A. Salmean & E. Lam, 2012. Duckweed rising at Chengdu: summary of the 1st International Conference on Duckweed Application and Research. Plant Molecular Biology 78(6): 627–632.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the International Science and Technology Cooperation Program of China (2014DFA30680, 2011DFB31690) and the Hainan Provincial Science and Technology Key Program (ZDZX2013023-1-26). The introduction of the duckweed research topic and helpful suggestions by Prof. Eric Lam (Rutgers, the State University of New Jersey, USA) to the Chinese Academy of Tropical Agricultural Sciences on the preparation of this manuscript is gratefully acknowledged. We thank Dr. Gotfried Jetschke, University of Jena for support with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaming Zhang.

Additional information

Handling editor: Stuart Anthony Halse

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, S., Huang, M. et al. Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae). Hydrobiologia 743, 75–87 (2015). https://doi.org/10.1007/s10750-014-2014-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2014-2

Keywords

Navigation