Skip to main content
Log in

Can differential predation of native and alien corixids explain the success of Trichocorixa verticalis verticalis (Hemiptera, Corixidae) in the Iberian Peninsula?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Invasive species represent an increasing fraction of aquatic biota. However, studies on the role and consequences of facilitative interactions among aliens remain scarce. Here, we investigated whether the spread of the alien water boatman Trichocorixa verticalis verticalis in the Iberian Peninsula is related to reduced mortality from predation compared with native Corixidae, especially since Trichocorixa co-occurs with the invasive fishes Gambusia holbrooki and Fundulus heteroclitus. All three invaders have a common native range in North America and are widespread in and around Doñana in SW Spain. Using laboratory experiments, we compared the predation rates by the two exotic fish and native Odonata larvae on Trichocorixa and the native Sigara lateralis. We found no evidence to suggest that Trichocorixa suffers lower predation rates. However, when both corixids were mixed together, predation of Trichocorixa by Odonata larvae was higher. Odonata larvae were size-limited predators and the proportion of corixids ingested was positively correlated with mask length. Since Trichocorixa is smaller than its native competitors, this may explain their higher susceptibility to predation by Odonata. This may be one of various factors explaining why Trichocorixa is particularly dominant in saline habitats where Odonata are rare, while it is still scarce in fresh waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, M. J., C. A. Pearl & R. B. Bury, 2003. Indirect facilitation of an anuran invasion by non-native fishes. Ecology Letters 6: 343–351.

    Article  Google Scholar 

  • Anholt, B. R. & E. E. Werner, 1998. Predictable changes in predation mortality as a consequence of changes in food availability and predation risk. Evolutionary Ecology 12: 729–738.

    Article  Google Scholar 

  • Askew, R. R., 1998. The Dragonflies of Europe. Harley Books, Colchester.

    Google Scholar 

  • Boyero, L., 2011. Expression of a behaviourally mediated morphology in response to different predators. Ecological Research 26: 1065–1070.

    Article  Google Scholar 

  • Brown, E. S., 1951. The relation between migration rate and type of aquatic insect with special reference to certain species of Corixidae. Proceedings of the Zoological Society of London 121: 539–545.

    Article  Google Scholar 

  • Bulté, G. & G. Blouin-Demers, 2008. Northern map turtles (Graptemys geographica) derive energy from the pelagic pathway through predation on zebra mussels (Dreissena polymorpha). Freshwater Biology 53: 497–508.

    Article  Google Scholar 

  • Campbell, D. C. & R. F. Denno, 1978. The structure of the aquatic insect community associated with intertidal pools on a New Jersey salt marsh. Ecological Entomology 3: 181–187.

    Article  Google Scholar 

  • Carlsson, N. O., O. Sarnelle & D. L. Strayer, 2009. Native predators and exotic prey – an acquired taste? Frontiers in Ecology and the Environment 7: 525–532.

    Article  Google Scholar 

  • Cherry, D. S., R. K. Guthrie, F. F. Sherberger & S. R. Larrick, 1979. The influence of coal and thermal discharges upon the distribution and bioaccumulation of aquatic invertebrates. Hydrobiologia 62: 257–267.

    Article  CAS  Google Scholar 

  • Ciros-Pérez, J., M. J. Carmona, S. Lapesa & M. Serra, 2004. Predation as a factor mediating resource competition among Rotifer Sibling species. Limnology and Oceanography 49: 40–50.

    Article  Google Scholar 

  • Cobo, F., R. Vieira-Lanero, E. Rego & M. J. Servia, 2010. Temporal trends in non-indigenous freshwater species records during the 20th century: a case study in the Iberian Peninsula. Biodiversity and Conservation 19: 3471–3487.

    Article  Google Scholar 

  • Coccia, C., P. Calosi, L. Boyero, A. J. Green & D. T. Bilton, 2013. Does ecophysiology determine invasion success? A comparison between the invasive boatman Trichocorixa verticalis verticalis and the native Sigara lateralis (Hemiptera, Corixidae) in South-West Spain. PLoS ONE 8: e63105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen, A. N., 2002. Success factors in the establishment of human-dispersed organisms. In Bullock, J. M., R. E. Kenward & R. S. Hails (eds), Dispersal Ecology. Blackwell, London: 374–394.

    Google Scholar 

  • Courchamp, F., M. Langlais & G. Sugihara, 2000. Rabbits killing birds: modelling the hyperpredation process. Journal of Animal Ecology 69: 154–164.

    Article  Google Scholar 

  • Dreamer-John, A., 2012. Ecological aspects of trophic niche width. MSc. thesis, School of Ocean Sciences, Bangor University.

  • Florencio, M., L. Serrano, P. Gomez-Rodriguez, A. Millan & C. Diaz-Paniagua, 2009. Inter- and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia 634: 167–183.

    Article  Google Scholar 

  • Garcia-Berthou, E., D. Boix & M. Clavero, 2007. Non-indigenous animal species naturalized in Iberian inland waters. In Gherardi, F. (ed.), Biological Invaders in Inland Waters: Profiles, Distribution and Threats. Springer, Dordrecht: 123–140.

    Chapter  Google Scholar 

  • Gherardi, F., S. Bertolino, M. Bodon, S. Casellato, S. Cianfanelli, M. Ferraguti, E. Lori, G. Mura, A. Nocita, N. Riccardi, G. Rossetti, E. Rota, R. Scalera, S. Zerunian & E. Tricarico, 2008. Animal xenodiversity in Italian inland waters: distribution, modes of arrival, and pathways. Biological Invasions 10: 435–454.

    Article  Google Scholar 

  • Gomez-Mestre, I. & C. Díaz-Paniagua, 2011. Invasive predatory crayfish do not trigger inducible defences in tadpoles. Proceedings of the Royal Society of London B 278: 3364–3370.

    Article  Google Scholar 

  • Griffin, A. S., 2004. Social learning about predators: a review and prospectus. Learning & Behavior 32: 131–140.

    Article  CAS  Google Scholar 

  • Guareschi, S., C. Coccia, D. Sánchez-Fernández, J. A. Carbonell, J. Velasco, L. Boyero, A. J. Green & A. Millán, 2013. How Far Could the alien boatman Trichocorixa verticalis verticalis spread? Worldwide estimation of its current and future potential distribution. PLoS ONE 8: e59757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrington, R. W. & E. S. Harrington, 1972. Food of female marsh killifish, Fundulus confluentus Goode and Bean, in Florida. The American Midland Naturalist 87: 492–502.

    Article  Google Scholar 

  • Hopper, K. R., 2001. Flexible antipredator behavior in a dragonfly species that coexists with different predator types. Oikos 93: 470–476.

    Article  Google Scholar 

  • Jansson, A. & P. E. Reavell, 1999. North American species of Trichocorixa (Heteroptera: Corixidae) introduced into Africa. African Entomology 7: 295–297.

    Google Scholar 

  • Kelts, L. J., 1979. Ecology of a tidal marsh corixid, Trichocorixa verticalis (Insecta, Hemiptera). Hydrobiologia 64: 37–57.

    Article  Google Scholar 

  • King, R. B., J. M. Ray & K. M. Stanford, 2006. Gorging on gobies: beneficial effects of alien prey on a threatened vertebrate. Canadian Journal of Zoology 84: 108–115.

    Article  Google Scholar 

  • Kment, P., 2006. A contribution to the faunistics of aquatic and semiaquatic Bugs (Heteroptera: Nepomorpha, Gerromorpha) in Portugal, with the review of biology of the Neartic corixid Trichocorixa verticalis (Fieber, 1851). Boletin de la Sociedad Entomológica Aragonesa 38: 359–361.

    Google Scholar 

  • Knapp, R. A., K. R. Matthews & O. Sarnelli, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological Monograph 71: 401–421.

    Article  Google Scholar 

  • L’Mohdi, O., N. Bennas, O. Himmi, K. Hajji, M. El Haissoufi, C. Hernando, J. A. Carbonell & A. Millán, 2010. Trichocorixa verticalis verticalis (Fieber, 1851) (Hemiptera, Corixidae): une nouvelle especies exotique au Maroc. Boletin de la Sociedad Entomológica Aragonesa 46: 395–400.

    Google Scholar 

  • Levine, J. M., P. B. Adler & S. G. Yelenik, 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters 7: 975–989.

    Article  Google Scholar 

  • Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.

    Article  Google Scholar 

  • Lodge, D. M., 1993. Biological invasions: lessons for ecology. Trends in Ecology & Evolution 8: 133–137.

    Article  CAS  Google Scholar 

  • MacKenzie, R., 2005. Spatial and temporal patterns in insect emergence from a southern Maine salt marsh. The American Midland Naturalist 153: 257–269.

    Article  Google Scholar 

  • Moreno-Valcárcel, R., F. J. Oliva-Paterna, C. Arribas & C. Fernández-Delgado, 2013. Fish composition and assemblage in the anthropogenic-modified tidally-restricted Doñana (Spain) marshlands. Estuarine, Coastal and Shelf Science 119: 54–63.

    Article  Google Scholar 

  • Nieser, N., M. Baena, J. Martínez-Avilés & A. Millán, 1994. Claves para la identificación de los heterópteros acuáticos (Nepomorpha y Gerromorpha) de la Península Ibérica- Con notas sobre las especies de las Islas Azores. Baleares, Canarias y Madeira.

    Google Scholar 

  • Primavera, J. H., 1997. Fish predation on mangrove-associated penaeids. The role of structures and substrate. Journal of Experimental Marine Biology and Ecology 215: 205–216.

    Article  Google Scholar 

  • Pyke, G. H., 2005. A review of the biology of Gambusia affinis and G. holbrooki. Reviews in Fish Biology and Fisheries 15: 339–365.

    Article  Google Scholar 

  • Rendón, M. A., A. J. Green, E. Aguilera & P. Almaraz, 2008. Status, distribution and long-term changes in the waterbird community wintering in Doñana, south–west Spain. Biological Conservation 141: 1371–1388.

    Article  Google Scholar 

  • Richardson, D. M., N. Allsopp, C. M. D’Antonio, S. J. Milton & M. Rejmánek, 2000. Plant invasions-the role of mutualisms. Biological Reviews of the Cambridge Philosophical Society 75: 65–93.

    Article  CAS  PubMed  Google Scholar 

  • Rochlin, I., M. E. Dempsey, T. Iwanejko & D. V. Ninivaggi, 2011. Aquatic insects of New York salt marsh associated with mosquito larval habitat and their potential utility as bioindicators. Journal of Insect Science (Online) 11: 1–17.

    Article  Google Scholar 

  • Rodríguez-Pérez, H. & A. J. Green, 2012. Strong seasonal effects of waterbirds on benthic communities in shallow lakes. Freshwater Science 31: 1273–1288.

    Article  Google Scholar 

  • Rodríguez-Pérez, H., M. Florencio, C. Gómez-Rodríguez, A. J. Green, C. Díaz-Paniagua & L. Serrano, 2009. Monitoring the invasion of the aquatic bug Trichocorixa verticalis verticalis (Hemiptera: Corixidae) in the wetlands of Doñana National Park (SW Spain). Hydrobiologia 634: 209–217.

    Article  Google Scholar 

  • Sala, J. & D. Boix, 2005. Presence of the nearctic water boatman Trichocorixa verticalis verticalis (Fieber, 1851) (Heteroptera, Corixidae) in the Algarve region (S Portugal). Graellsia 61: 31–36.

    Article  Google Scholar 

  • Serrano, L., M. Reina, G. Martín, I. Reyes, A. Arechederra, D. León & J. Toja, 2006. The aquatic systems of Doñana (SW Spain): watersheds and frontiers. Limnética 25: 11–32.

    Google Scholar 

  • Sih, A., D. I. Bolnick, B. Luttbeg, J. L. Orrock, S. D. Peacor, L. M. Pintor, E. Preisser, J. S. Rehage & J. R. Vonesh, 2010. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621.

    Article  Google Scholar 

  • Simberloff, D. & B. Von Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.

    Article  Google Scholar 

  • Strauss, S. Y., J. A. Lau & S. P. Carroll, 2006. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecology Letters 9: 357–374.

    Article  PubMed  Google Scholar 

  • Tecco, P. A., D. E. Gurvich, S. Diaz, N. Perez-Harguindeguy & M. Cabido, 2006. Positive interaction between invasive plants: the influence of Pyracantha angustifolia on the recruitment of native and exotic woody species. Austral Ecology 31: 293–300.

    Article  Google Scholar 

  • Van de Meutter, F., H. Trekels, A. J. Green & R. Stoks, 2010a. Is salinity tolerance the key to success for the invasive water bug Trichocorixa verticalis? Hydrobiologia 649: 231–238.

    Article  Google Scholar 

  • Van de Meutter, F., H. Trekels & A. J. Green, 2010b. The impact of the North American waterbug Trichocorixa verticalis (Fieber) on aquatic macroinvertebrate communities in southern Europe. Fundamental and Applied Limnology 177: 283–292.

    Article  Google Scholar 

  • Walker, E. M., 1953. The Odonata of Canada and Alaska, Vol. 1. University of Toronto Press, Toronto.

    Google Scholar 

Download references

Acknowledgments

This research was funded by Project P10-RNM-6262 financed by the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (including FEDER funds), and by a JAE predoctoral grant from CSIC. Research permits were provided by Doñana National and Natural Park, Regional Andalusian Government (Consejería de Medio Ambiente). Fish capture and handling was approved by the CSIC Animal Bioethics Committee. We are grateful to Raquel López Luque and Carmen Diz-Salgado for laboratory and field assistance. We also thank J. Miguel Medialdea and Pesquerías Isla Mayor, S.A. for providing facilities during fieldwork in Veta la Palma fish farm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Coccia.

Additional information

Handling editor: Nuria Bonada

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coccia, C., Boyero, L. & Green, A.J. Can differential predation of native and alien corixids explain the success of Trichocorixa verticalis verticalis (Hemiptera, Corixidae) in the Iberian Peninsula?. Hydrobiologia 734, 115–123 (2014). https://doi.org/10.1007/s10750-014-1873-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1873-x

Keywords

Navigation