Skip to main content

Advertisement

Log in

Typification of vessel-induced waves and their interaction with different bank types, including management implications for river restoration projects

  • WORLD’S LARGE RIVERS CONFERENCE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Restoration projects often aim to initiate side erosion processes in order to improve the ecological situation, leading to banks of gentle slopes which positively affect biotic habitats. However, within navigable reaches such measures have to be planned under consideration of the impact of vessel-generated waves on YOY-fish. Hence an extensive study was conducted at different bank types to analyze and describe waves, induced by passing vessels. A high resolution wave gauge was exposed, to obtain wave data of different vessel types over a broad discharge range. Simultaneously vessel passage was recorded using an automatic identification system. Attributed to the ships, different wave types could be distinguished and their specific parameters (e.g., wave height) were described. Additionally we analyzed by which of these parameters wave height is primarily affected. For passenger ships a speed reduction of 5 km h−1 results in a reduction of wave height of 14 cm at the Danube. A morphological analysis was accomplished to identify habitat loss and shift of the water’s edge based on ship induced maximum drawdown. Habitat loss, expressed as retrogression of the water’s edge, ranged between 0.88 and 35 m for the highest drawdown recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams, S. R., T. M. Keevin, K. J. Killgore & J. J. Hoover, 1999. Stranding potential of young fishes subjected to simulated vessel-induced drawdown. Transactions of the American Fisheries Society 128: 1230–1234.

    Article  Google Scholar 

  • Arlinghaus, R., C. Engelhardt, A. Sukhodolov & C. Wolter, 2002. Fish recruitment in a canal with intensive navigation: implications for ecosystem management. Journal of Fish Biology 61: 1386–1402.

    Article  Google Scholar 

  • Barett, J. C., G. D. Grossman & J. Rosenfeld, 1992. Turbidity-induced changes in reactive distance of rainbow trout. Transactions of the American Fisheries Society 121: 437–443.

    Article  Google Scholar 

  • Bauer, B. O., M. S. Lorang & D. J. Sherman, 2002. Estimating boat-wake-induced levee erosion using sediment suspension measurements. Journal of Waterway, Port, Coastal and Ocean Engineering 128: 152–162.

    Article  Google Scholar 

  • Bhowmink N. G., T. W. Soong, W. F. Reichelt & N. M. L. Seddik, 1992. Waves generated by recreational traffic on the Upper Mississippi river system. Illinois State Water Survey, Champaign, Research Report 117.

  • Brunke, M.A., A. Sukhodolov, & C. Engelhardt, 2002. Sunk und Wellenschlag durch Schiffe in Wasserstraßen: Hydraulische Kräfte und Litoralfauna. - Tagungsbericht der Jahrestagung 2001 (Kiel), 412-416, (Deutsche Gesellschaft für Limnologie), Tutzing 2002.

  • Dam, K. T., K. Tanimoto & E. Fatimah, 2008. Investigation of ship waves in a narrow channel. Journal of Marine Science and Technology 13: 223–230.

    Article  Google Scholar 

  • Dand, I. W., T. A. Dinham-Peren & L. King, 1999. Hydrodynamic Aspects of a Fast Catamaran Operating in Shallow Water. Hydrodynamics of High Speed Craft. The Royal Institution of Naval Architects, London: 1–17.

    Google Scholar 

  • Di Silvio, G., C. Dall’Angelo, L. Zaggia & J. Rapaglia, 2011. Waves produced by ship displacement on adjacent shoals and lateral basins of navigation canals. In Engineers Australia (ed), Proceedings of the 34th IAHR World Congress, 896–903; ISBN: 978-0-85825-868-6.

  • Gharbi, S., G. Valkov, S. Hamdi & I. Nistor, 2010. Numerical and field study of ship-induced waves along the St. Lawrence Waterway, Canada. Natural Hazards 54: 605–621.

    Article  Google Scholar 

  • Habersack, H., 2000. The river-scaling concept (RSC): a basis for ecological assessments. Hydrobiologia 422/423: 49–60.

    Article  CAS  Google Scholar 

  • Habersack H., M. Liedermann & M. Tritthart, 2007. Restoring large rivers – the integrated Danube river project. In Proceedings of the 6th International Symposium on Ecohydraulics, Christchurch, New Zealand.

  • Hohensinner, S., M. Jungwirth, S. Muhar & H. Habersack, 2005. Historical analyses: a foundation for developing and evaluating river-type specific restoration programs. International Journal of River Basin Management 3(2): 87–96.

    Article  Google Scholar 

  • Holland, L. E., 1986. Effects if barge traffic on distribution and survival of ichthyoplankton and small fishes in the Upper Mississippi River. Transactions of the American Fisheries Society 115: 162–165.

    Article  Google Scholar 

  • Houser, C., 2010. Relative importance of vessel-generated an wind waves to salt marsh erosion in a restricted fetch environment. Journal of Coastal Research 26(2): 230–240.

    Article  Google Scholar 

  • Hüsig, A., T. Linke & C. Zimmermann, 2000. Effects from supercritical ship operation on inland canals. Journal of Waterway, Port, Coastal and Ocean Engineering 126(3): 130–135.

    Article  Google Scholar 

  • Jiang T., R. Henn & S.D. Sharma, 2002. Wash waves generated by ships moving on fairways of varying topography. In Proceedings of the 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan.

  • Jungwirth, M., S. Muhar & S. Schmutz, 2002. Re-establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology 47: 867–887.

    Article  Google Scholar 

  • Keckeis, H. & F. Schiemer, 2001. The ecology of the early life history stages of riverine fish: New perspectives in conservation and river management. Archiv für Hydrobiologie 113(2–4): 517–522.

    Google Scholar 

  • Kucera-Hirzinger, V., E. Schludermann, H. Zornig, A. Weissenbacher, M. Schabuss & F. Schiemer, 2009. Potential effects of navigation-induced wave wash on the early life history stages of riverine fish. Aquatic Science 71: 94–102.

    Article  Google Scholar 

  • Magdi, M. A., K. J. Murphy & J. Langendorff, 1999. Interrelations of river ship traffic with aquatic plants in the River Nile, Upper Egypt. Hydrobiologia 415: 93–100.

    Article  Google Scholar 

  • Maynord, S.T., 1996. Interim Report for the Upper Mississippi River – Illinois Waterway System Navigation Study, Physical Forces Near Commercial Tows. Vicksburg, Mississippi: U.S. Army Engineer, Waterways Experiment Station ENV Report 19.

  • Maynord, S. T., 2005. Wave height from planning and semi-planing small boats. River Research and Applications 21: 1–17.

    Article  Google Scholar 

  • McConchie, J. A. & I. E. J. Toleman, 2003. Boat wakes as a cause of riverbank erosion: a case study from the Waikato River, New Zealand. Journal of Hydrology 42(2): 163–179.

    Google Scholar 

  • Nanson, G. C. & A. D. Knighton, 1996. Anabranching rivers: their cause, character and classification. Earth Surface Processes and Landforms 21: 217–239.

    Article  Google Scholar 

  • Nanson, G. C., A. von Krusenstierna & E. A. Bryant, 1994. Experimental measurements of river-bank erosion caused by boat-generated waves on the Gordon River, Tasmania. Regulated Rivers 9: 1–14.

    Article  Google Scholar 

  • NIWA Instrument Systems, 2001. Dobie wave gauge. Operator’s Manual Version 4.1. Christchurch, New Zealand.

  • Oebius, H., 2000. Charakterisierung der Einflussgrößen Schiffsumströmung und Propellerstrahl auf die Wasserstraßen. Mitteilungsblatt der Bundesanstalt für Wasserbau 2000: 7–22.

  • Parchure, T. M., W. H. McAnally & A. M. Teeter, 2001. Desktop method for estimating vessel-induced sediment suspension. Journal of Hydraulic Engineering 127(7): 577–587.

    Article  Google Scholar 

  • PIANC, 2003. Guidelines for managing wake wash from high-speed vessels. Report of the Working Group 41 of the Maritime Navigation Commission. International Navigation Association (PIANC), Brussels.

  • Rapaglia, J., L. Zaggia, K. Ricklefs, M. Gelinas & H. Bokuniewicz, 2011. Characteristics of ships’ depression waves and associated sediment resuspension in Venice Lagoon, Italy. Journal of Marine Systems 85: 45–56.

    Article  Google Scholar 

  • Rütten M., 1994. Der Einfluss der Schifffahrt auf das Makrozoobenthos – The influence of navigation on the macrozoobenthic community. Wissenschaftliche Mitteilungen des Niederösterreichischen Landesmuseums, Sonderband Fluss-Ufer-Ökologie.

  • Schludermann, E., M. Liedermann, H. Hoyer, M. Tritthart, H. Habersack & H. Keckeis, 2013. Effects of vessel-induced waves on the YOY-fish assemblage at two different habitat types in the main stem of a large river (Danube Austria). Hydrobiologia. doi:10.1007/s10750-013-1680-9.

    Google Scholar 

  • Schoellhamer, D. H., 1996. Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuarine, Coastal and Shelf Science 43: 533–548.

    Article  Google Scholar 

  • Simon S. & J. Troegl, 2011. River Information Services – increasing safety and efficiency of inland navigation. In International Conference on the Status and Future of the world’s large rivers, Vienna, Austria.

  • Smart, M., R. Rada, D. Nielson & T. Clafin, 1985. The effect of commercial and recreational traffic on the resuspension of sediment in navigation pool 9 of the upper Mississippi River. Hydrobiologia 126: 263–274.

    Article  Google Scholar 

  • Sorensen, R. M., 1967. Investigation of ship generated waves. Journal of the Waterways and Harbours Division 93: 85–99.

    Google Scholar 

  • Whittaker, T.J.T., R. Doyle & B. Elsaesser, 2001. An experimental investigation of the physical characteristics of fast ferry wash. In V. Bertram (ed.), HIPER’01 2nd International EuroConference on High Performance Marine Vehicles, Hamburg: 480–491.

  • Wilcove, D. S., D. Rothstein, J. Dubow, A. Phillips & E. Loscos, 1998. Quantifying threats to imperilled species in the United States. BioScience 48: 607–615.

    Article  Google Scholar 

  • Winkler, G., H. Keckeis, W. Reckendorfer & F. Schiemer, 1997. Temporal and spatial dynamics of 0+ Chondrostoma nasus, at the inshore zone of a large river. Folia Zoologica 46(Suppl. 1): 151–168.

    Google Scholar 

  • Wolter, C. & R. Arlinghaus, 2003. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13: 63–89.

    Article  Google Scholar 

  • Wolter, C., R. Arlinghaus, A. Sukhodolov & C. Engelhardt, 2004. A model of navigation-induced currents in inland waterways and implications for juvenile fish displacement. Environmental Management 34(5): 656–668.

    Article  PubMed  Google Scholar 

  • Zauner, G. & F. Schiemer, 1994. Auswirkungen der Schifffahrt auf die Fischfauna großer Fließgewässer – effects of navigation on the fish fauna in large rivers. Wissenschaftliche Mitteilungen des Niederösterreichischen Landesmuseums 8: 271–285.

    Google Scholar 

Download references

Acknowledgments

The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged. The study presented partly contributed to the monitoring task of the Integrated River Engineering Project on the Danube East of Vienna, co-financed by “via donau,” the European Union and the Austrian Ministry of Transport, Innovation and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Liedermann.

Additional information

Guest editors: H. Habersack, S. Muhar & H. Waidbacher / Impact of human activities on biodiversity of large rivers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liedermann, M., Tritthart, M., Gmeiner, P. et al. Typification of vessel-induced waves and their interaction with different bank types, including management implications for river restoration projects. Hydrobiologia 729, 17–31 (2014). https://doi.org/10.1007/s10750-014-1829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1829-1

Keywords

Navigation