Skip to main content
Log in

Ecosystem processes drive dissolved organic matter quality in a highly dynamic water body

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The complexity and variability of processes determining dissolved organic matter (DOM) quality is likely to increase in highly dynamic systems such as Mediterranean water bodies. We studied the dynamics of DOM in a Mediterranean lagoon dominated by seasonal submerged vegetation and receiving torrential freshwater inputs. In order to trace changes in DOM quality throughout the year in relation with potential DOM sources, we used spectroscopic techniques including UV–visible absorbance and fluorescence excitation–emission matrices. The quality of the lagoon DOM fluctuates on a seasonal basis between the characteristics of torrential inputs and macrophytes. Humification and aromaticity of DOM increased markedly after the torrential inputs of materials derived from terrestrial vegetation and soils in the catchment. The macrophytes in the lagoon contributed with less humified materials and protein-like compounds. Other minor processes such as seawater entrances, photodegradation or temporary bottom hypoxia translated into sporadic DOM quality changes. These results highlight the need of a whole ecosystem approach to understand changes in DOM quality due to ecosystem processes that might otherwise be exclusively attributed to DOM reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Álvarez-Cobelas, M. A., C. Rojo & D. G. Angeler, 2005. Mediterranean limnology: current status, gaps and the future of Mediterranean freshwater ecosystems. Journal of Limnology 64: 13–29.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anesio, A. M., J. Theil-Nielsen & W. Granéli, 2000. Bacterial growth on photochemically transformed leachates from aquatic and terrestrial primary producers. Microbial Ecology 40: 200–208.

    CAS  PubMed  Google Scholar 

  • Arnold, T. M. & N. M. Targett, 2002. Marine tannins: the importance of a mechanistic framework for predicting ecological roles. Journal of Chemical Ecology 28: 1919–1934.

    Article  CAS  PubMed  Google Scholar 

  • Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter & L. J. Tranvik, 2009. The boundless carbon cycle. Nature Geoscience 2: 598–600.

    Article  CAS  Google Scholar 

  • Beklioglu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.

    Article  Google Scholar 

  • Bertilsson, S. & J. B. Jones, 2003. Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In Findlay, S. E. G. & R. L. Sinsabaugh (eds), Aquatic Ecosystems. Interactivity of Dissolved Organic Matter. Academic Press/Elsevier Science, San Diego: 3–19.

  • Bianchi, T., 2007. Biogeochemistry of Estuaries. Oxford University Press, New York.

    Google Scholar 

  • Birdwell, J. E. & A. S. Engel, 2010. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Organic Geochemistry 41: 270–280.

    Google Scholar 

  • Bull, W. B., 1997. Discontinuous ephemeral streams. Geomorphology 19: 227–276.

    Article  Google Scholar 

  • Cammack, W. K. L., J. Kalff, Y. T. Prairie & E. M. Smith, 2004. Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnology and Oceanography 49: 2034–2045.

    Article  Google Scholar 

  • Catalán, N., B. Obrador, C. Alomar & J. L. Pretus, 2013a. Seasonality and landscape factors drive dissolved organic matter properties in Mediterranean ephemeral washes. Biogeochemistry 112: 261–274.

    Article  Google Scholar 

  • Catalán, N., B. Obrador, M. Felip & J. L. Pretus, 2013b. Higher reactivity of allochthonous vs. autochthonous DOC sources in a shallow lake. Aquatic Sciences 75: 581–593.

    Article  Google Scholar 

  • Coble, P. G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51: 325–346.

    Article  CAS  Google Scholar 

  • Coops, H., M. Beklioglu & T. L. Crisma, 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia 506–509: 23–27.

    Article  Google Scholar 

  • Cory, R. M. & L. A. Kaplan, 2012. Biological lability of streamwater fluorescent dissolved organic matter. Limnology and Oceanography 57: 1347–1360.

    Article  CAS  Google Scholar 

  • Cory, R. M. & D. M. McKnight, 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environmental Science & Technology 39: 8142–8149.

    Article  CAS  Google Scholar 

  • Del Vecchio, R. & N. V. Blough, 2004. Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Marine Chemistry 89: 169–187.

    Article  Google Scholar 

  • Demarty, M. & Y. T. Prairie, 2009. In situ dissolved organic carbon (DOC) release by submerged macrophyte–epiphyte communities in southern Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences 66: 1522–1531.

    Article  CAS  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, et al., 2006. The global abundance and size distribution of lakes, ponds and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Fellman, J. B., E. Hood & R. G. M. Spencer, 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnology and Oceanography 55: 2452–2462.

    Article  CAS  Google Scholar 

  • Fulton, J. R., D. M. McKnight, R. M. Cory, C. Stedmon, E. Blunt & C. M. Foreman, 2004. Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake. Aquatic Sciences 66: 27–46.

    Article  CAS  Google Scholar 

  • Guillemette, F. & P. A. DelGiorgio, 2011. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnology and Oceanography 56: 734–748.

    Article  CAS  Google Scholar 

  • Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber & K. Mopper, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53: 955–969.

    Article  Google Scholar 

  • Hernes, P. J., B. A. Bergamaschi, R. S. Eckard & R. G. M. Spencer, 2009. Fluorescence-based proxies for lignin in freshwater dissolved organic matter. Journal of Geophysical Research 114: G00F03.

  • Hood, E., D. M. McKnight & M. W. Williams, 2003. Sources and chemical quality of dissolved organic carbon (DOC) across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, USA. Water Resources Research 39: 1188.

    Article  Google Scholar 

  • Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J. M. Froidefond & E. Parlanti, 2009. Organic geochemistry properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry 40: 706–719.

    Article  CAS  Google Scholar 

  • Huguet, A., L. Vacher, S. Saubusse, H. Etcheber, G. Abril, S. Relexans, F. Ibalot, et al., 2010. New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Organic Geochemistry 41: 595–610.

    Article  CAS  Google Scholar 

  • Inamdar, S., N. Finger, S. Singh, M. Mitchell, D. Levia, H. Bais, D. Scott, et al., 2011. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry 108: 55–76.

    Article  Google Scholar 

  • Jaffé, R., D. M. McKnight, N. Maie, R. M. Cory, W. H. McDowell & J. L. Campbell, 2008. Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. Journal of Geophysical Research 113: 1–15.

    Article  Google Scholar 

  • Jeffrey, S. & G. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b, c1, and c2 in higher plants, algae and phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Jiang, G., R. Ma, S. A. Loiselle & H. Duan, 2012. Optical approaches to examining the dynamics of dissolved organic carbon in optically complex inland waters. Environmental Research Letters 7: 034014.

    Article  Google Scholar 

  • Kalbitz, K., W. Geyer & S. Geyer, 1999. Spectroscopic properties of dissolved humic substances? A reflection of land use history in a fen area. Biogeochemistry 47: 219–238

    Google Scholar 

  • Kothawala, D. N., E. Von Wachenfeldt, B. Koehler & L. J. Tranvik, 2012. Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. The Science of the Total Environment 433: 238–246.

    Article  CAS  PubMed  Google Scholar 

  • Kowalczuk, P., W. J. Cooper, M. J. Durako, A. E. Kahn, M. Gonsior & H. Young, 2010. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations. Marine Chemistry 118: 22–36.

    Article  CAS  Google Scholar 

  • Kritzberg, E. S., J. J. Cole, M. Pace, W. Granéli & D. L. Bade, 2004. Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnology and Oceanography 49: 588–596.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R. 2006. Principles of Fluorescence Spectroscopy. Springer, New York.

  • Lapierre, J. F. & J. J. Frenette, 2009. Effects of macrophytes and terrestrial inputs on fluorescent dissolved organic matter in a large river system. Aquatic Sciences 71: 15–24.

    Article  CAS  Google Scholar 

  • Maie, N., N. M. Scully, O. Pisani & R. Jaffé, 2007. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Research 41: 563–570.

    Article  CAS  PubMed  Google Scholar 

  • Mcknight, D. M., E. W. Boyer, P. Westerhoff, P. T. Doran, T. Kulbe & D. T. Andersen, 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.

    Article  CAS  Google Scholar 

  • Miller, M. P. & D. M. McKnight, 2010. Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley. Journal of Geophysical Research 115: 1–14.

    Article  Google Scholar 

  • Moran, M. A., W. M. Sheldon & R. G. Zepp, 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnology and Oceanography 45: 1254–1264.

    Article  CAS  Google Scholar 

  • Murphy, K. R., K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme & G. R. Aiken, 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science & Technology 44: 9405–9412.

    Article  CAS  Google Scholar 

  • Obrador, B. & J. L. Pretus, 2010. Spationtemporal dynamics of submerged macrophytes in a Mediterranean coastal lagoon. Estuarine, coastal and Shelf Science 87: 145–155.

    Article  CAS  Google Scholar 

  • Obrador, B. & J. L. Pretus, 2012. Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation. Hydrobiologia 699: 35–54.

    Article  CAS  Google Scholar 

  • Obrador, B. & J. L. Pretus, 2013. Carbon and oxygen metabolism in a densely vegetated lagoon: implications of spatial heterogeneity. Limnetica 32: 321–336.

    Google Scholar 

  • Obrador, B., J. L. Pretus & M. Menéndez, 2007. Spatial distribution and biomass of aquatic rooted macrophytes and their relevance in the metabolism of a Mediterranean coastal lagoon. Scientia Marina 71: 57–64.

    Article  CAS  Google Scholar 

  • Obrador, B., E. Moreno-Ostos & J. L. Pretus, 2008. A dynamic model to simulate water level and salinity in a Mediterranean coastal lagoon. Estuaries and Coasts 31: 1117–1129.

    Article  Google Scholar 

  • Prairie, Y. T., 2008. Carbocentric limnology: looking back, looking forward. Aquatic Science 548: 543–548.

    Google Scholar 

  • R Development Core Team, 2012. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.

  • Singh, S., E. J. D’Sa & E. M. Swenson, 2010. Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). The Science of the Total Environment 408: 3211–3222.

    Article  CAS  PubMed  Google Scholar 

  • Sobek, S., L. J. Tranvik, Y. T. Prairie & J. J. Cole, 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7500 widely distributed lakes. Limnology and Oceanography 52: 1208–1219.

    Article  CAS  Google Scholar 

  • Stedmon, C. A. & S. Markager, 2005. Tracing the production and degradation of autochthonous fractions of dissolved organic matter using fluorescence analysis. Limnology and Oceanography 50: 1415–1426.

    Article  CAS  Google Scholar 

  • Stedmon, C. A., S. Markager & R. Bro, 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82: 239–254.

    Article  CAS  Google Scholar 

  • Tank, S. E., L. F. W. Lesack, J. A. L. Gareis, C. L. Osburn & R. H. Hesslein, 2011. Multiple tracers demonstrate distinct sources of dissolved organic matter to lakes of the Mackenzie Delta, western Canadian Arctic. Limnology and Oceanography 56: 1297–1309.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114.

    Article  CAS  Google Scholar 

  • Tranvik, L. J. & S. Bertilsson, 2001. Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecology Letters 4: 458–463.

    Article  Google Scholar 

  • Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.

    Article  CAS  Google Scholar 

  • Vázquez, E., S. Amalfitano, S. Fazi & A. Butturini, 2010. Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 102: 59–72.

    Article  Google Scholar 

  • Vergnoux, A., R. Di Rocco, M. Domeizel, M. Guiliano, P. Doumenq & F. Théraulaz, 2011. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV–vis and fluorescence spectroscopy approaches. Geoderma 160: 434–443.

    Article  CAS  Google Scholar 

  • Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii & K. Mopper, 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science & Technology 37: 4702–4708.

    Article  CAS  Google Scholar 

  • Westerhoff, P. & D. Anning, 2000. Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. Journal of Hydrology 236: 202–222.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: lake and river ecosystems. Academic Press, San Diego.

    Google Scholar 

  • Weyhenmeyer, G. A., M. Fröberg, E. Karltun, M. Khalili, D. N. Kothawala, J. Temnerud & L. J. Tranvik, 2012. Selective decay of terrestrial organic carbon during transport from land to sea. Global Change Biology 18: 349–355.

    Article  Google Scholar 

  • Zhang, Y., X. Liu, M. Wang & B. Qin, 2013. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Organic Geochemistry 55: 26–37.

    Article  Google Scholar 

  • Zsolnay, A., E. Baigar, M. Jimenez, B. Steinweg & F. Saccomandi, 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38: 45–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the project CGL 2008-05095/BOS, from the Ministerio de Ciencia e Innovación (Spain). NC held a doctoral fellowship (FI 2010–2013) from the Generalitat de Catalunya and is currently sustained by the unemployment allowance of the Spanish Public Employment Service (SEPE). We would like to thank Carmen Alomar for her assistance in the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Núria Catalán.

Additional information

Handling editor: Stefano Amalfitano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalán, N., Obrador, B. & Pretus, J.L. Ecosystem processes drive dissolved organic matter quality in a highly dynamic water body. Hydrobiologia 728, 111–124 (2014). https://doi.org/10.1007/s10750-014-1811-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1811-y

Keywords

Navigation