Skip to main content
Log in

Biofilm functional responses to the rehydration of a dry intermittent stream

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Intermittent water flow regimes characterize streams in many world regions, especially those with arid and semiarid climates. During cease to flow conditions, biofilms on streambed sediments may be exposed to desiccation. Environmental conditions and resource availability change with desiccation and may influence biofilm functioning and whole stream ecosystem processes. Rainfall events during the nonflow phase can rehydrate streambed sediments, but the effect of these pulses on biofilm functioning is unclear. This study aimed to analyze the effects of a rehydration event on biofilm functional diversity during the nonflow period in a subtropical Australian stream. Biofilms from three different stream pools on the same reach; one permanently water-covered and the other two differing in their desiccation time were studied. Biofilms initially differed owing to the time they were exposed to dry conditions but rehydration events significantly increased biofilm functional diversity, producing a “reset” effect on the desiccation exposure, as after that bacterial functioning decreased again because of the new dry conditions. The observed rapid biofilm responses to rehydration during flow intermittency might be essential in sustaining biofilm functional diversity in intermittent streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison, S. D. & J. B. H. Martiny, 2008. Resistance, resilience, and redundancy in microbial communities. PNAS 105: 11512–11519.

    Article  CAS  PubMed  Google Scholar 

  • Amalfitano, S., S. Fazi, A. Zoppini, A. B. Caracciolo, P. Grenni & A. Puddu, 2008. Responses of benthic bacteria to experimental drying in sediments from mediterranean temporary rivers. Microbial Ecology 55: 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 626–639.

    Article  Google Scholar 

  • Bär, M., J. von Hardenberg, E. Meron, & A. Provenzale, 2002. Modelling the survival of bacteria in drylands: the advantage of being dormant. Proceedings of the Royal Society B. Biological sciences 269: 937–942.

  • Belnap, J., S. L. Phillips & M. E. Miller, 2004. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141: 306–316.

    Article  PubMed  Google Scholar 

  • Boulton, A. J. & P. S. Lake, 1992. The ecology of two intermittent streams in Victoria, Australia III. Temporal changes in faunal composition. Freshwater Biology 27: 123–138.

    Article  Google Scholar 

  • Braun, B., U. Böckelmann, E. Grohmann & U. Szewzyk, 2010. Bacterial soil communities affected by water-repellency. Geoderma 158: 343–351.

    Article  Google Scholar 

  • Buesing, N. & M. O. Gessner, 2003. Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples. Applied and Environmental Microbiology 72: 291–301.

    Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Burns, R. G., J. L. deForest, J. Marxsen, R. L. Sinsabaugh, M. E. Stromberger, M. D. Wallenstein, M. N. Weintraub & A. Zoppini, 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry 58: 216–234.

    Article  CAS  Google Scholar 

  • Chowdhury, N., P. Marschner & R. Burns, 2011. Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant and Soil 344: 241–254.

    Article  CAS  Google Scholar 

  • Cobon, D., & N. Toombs, 2007. Practical adaptation to Climate change in regional natural resource management. Queensland Case Studies–South East Queensland Western Catchments Report. Toowoomba.

  • Dahm, C. N., M. A. Baker, D. I. Moore & J. R. Thibault, 2003. Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshwater Biology 48: 1219–1231.

    Article  CAS  Google Scholar 

  • Davies, B. R., M. C. Thoms, K. F. Walker, J. H. O’Keefe & J. A. Gore, 1994. Dryland rivers: their ecology, conservation and management. In Calow, P. & G. E. Petts (eds), The Rivers Handbook. Blackwell Scientific, Oxford: 284–511.

    Google Scholar 

  • Döll, P. & H. M. Schmied, 2012. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters 7: 014037.

    Article  Google Scholar 

  • Febria, C. M., P. Beddoes, R. R. Fulthorpe & D. D. Williams, 2011. Bacterial community dynamics in the hyporheic zone of an intermittent stream. The ISME Journal 6: 1078–1788.

    Article  PubMed  Google Scholar 

  • Fierer, N. & J. P. Schimel, 2002. Effects of drying – rewetting frequency on soil carbon and nitrogen transformations. Soil Biology & Biochemistry 34: 777–787.

    Article  CAS  Google Scholar 

  • Garland, J. L., 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biology & Biochemistry 28: 223–230.

    Article  CAS  Google Scholar 

  • Garland, J. L., 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology 24: 289–300.

    Article  CAS  Google Scholar 

  • Garland, J. L. & A. L. Mills, 1991. Classification and characterization of heterotrophic microbial communities on the basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Applied and Environmental Microbiology 57: 2351–2359.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean Climate Regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Griebler, C., B. Mindl & D. Slezak, 2001. Combining DAPI and SYBR Green II for the enumeration of total bacterial numbers in aquatic sediments. International Review of Hydrobiology 86: 453–465.

    Article  Google Scholar 

  • Hirabayashi, Y., K. Shinjiro, S. Emori, O. Taikan & K. Masahide, 2008. Global projections of changing risks of floods and droughts in a changing climate. Hydrological Science Journal 53: 754–772.

    Article  Google Scholar 

  • Howard-Williams, C., C. L. Vincent, P. A. Broady & W. F. Vincent, 1986. Antarctic stream ecosystems: variability in environmental properties and algal community structure. International Review of Hydrobiology 71: 511–544.

    Article  CAS  Google Scholar 

  • Insman, H., 1997. A new set of substrates proposed for community characterization in environmental samples. In Insman, H. & A. Ranger (eds), Microbial Communities: Functional Versus Structural Approaches. Springer, New York: 259–260.

    Google Scholar 

  • Insam, H., & M. Goberna, 2004. Use of Biolog® for the Community Level Physiological Profiling (CLPP) of environmental samples In Kowalchuk, G. A., F. J. de Bruijn, I. M. Head, A. D. Akkermans, & J. D. van Elsas (eds), Molecular Microbial Ecology Manual, 2 Edn. Kluwer Academic Publishers, Netherlands: 853–860.

  • Iovieno, P. & E. Bååth, 2008. Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiology Ecology 65: 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Kennard, M. J., B. J. Pusey, J. D. Olden, S. J. Mackay, J. L. Stein & N. Marsh, 2010. Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology 55: 171–193.

    Article  Google Scholar 

  • Kennedy, A. D., 1993. Water as a Limiting Factor in the Antarctic terrestrial environment: abiogeographical synthesis. Artic and Alpine research 25: 308–315.

    Article  Google Scholar 

  • Kuwae, T. & Y. Hosokawa, 1999. Determination of abundance and biovolume of bacteria in sediments by dual staining with 4′,6-diamidino-2-phenylindole and acridine orange: relationship to dispersion treatment and sediment characteristics. Applied and Environmental Microbiology 65: 3407–3412.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Article  Google Scholar 

  • Lear, G., A. Dopheide, P. Ancion, K. Roberts, V. Washington, J. Smith & G. D. Lewis, 2012. Biofilms in freshwater: their importance for the maintenance and monitoring of freshwater health. In Lear, G. & G. Lewis (eds), Microbial Biofilms: Current Research and Applications. Caister Academic Press, Auckland: 238.

    Google Scholar 

  • Lindstrom, J. E., R. P. Barry & J. F. Braddock, 1998. Microbial community analysis: a kinetic approach to constructing potential C source utilization patterns. Soil Biology & Biochemistry 30: 231–239.

    Article  CAS  Google Scholar 

  • Mamilov, A. S. & O. M. Dilly, 2002. Soil microbial eco-physiology as affected by short-term variations in environmental conditions. Soil Biology & Biochemistry 34: 1283–1290.

    Article  CAS  Google Scholar 

  • Marxsen, J., A. Zoppini & S. Wilczek, 2010. Microbial communities in streambed sediments recovering from desiccation. FEMS Microbiology Ecology 71: 374–386.

    Article  CAS  PubMed  Google Scholar 

  • Milly, P. C. D., K. A. Dunne & A. V. Vecchia, 2005. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438: 347–350.

    Article  CAS  PubMed  Google Scholar 

  • Nadeau, T. L. & M. C. Rains, 2007. Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. Journal of the American Water Resources Association 43: 118–133.

    Article  Google Scholar 

  • Parry, M. L., J. P. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson, 2007. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Placella, S. A., E. L. Brodie & M. K. Firestone, 2012. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. PNAS 109: 10931–10936.

    Article  CAS  PubMed  Google Scholar 

  • Preston-Mafham, J., L. Boddy & P. F. Randerson, 2002. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles–a critique. FEMS Microbiology Ecology 42: 1–14.

    CAS  PubMed  Google Scholar 

  • Rees, G. N., G. O. Watson, D. S. Baldwin & A. M. Mitchell, 2006. Variability in sediment microbial communities in a semipermanent stream: impact of drought. Journal of North America Benthological Society 25: 370–378.

    Article  Google Scholar 

  • Romaní, A. M. & S. Sabater, 1997. Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream. Archiv für Hydrobiologie 140: 261–271.

    Google Scholar 

  • Romaní, A. M., J. Artigas, A. Camacho, M. A. S. Graça, & C. Pascoal, 2009. La biota de los ríos: los microorganismos heterotróficos Conceptos y técnicas en ecología fluvial. Fundación BBVA: 169–218.

  • Romaní, A. M., S. Amalfitano, J. Artigas, S. Fazi, S. Sabater, X. Timoner, I. Ylla, & A. Zoppini, 2012. Microbial biofilm structure and organic matter use in mediterranean streams. Hydrobiologia 1–16. doi:10.1007/s10750-012-1302-y

  • Sala, M. M., M. Estrada & J. M. Gasol, 2006. Seasonal changes in the functional diversity of bacterioplankton in contrasting coastal environments of the NW Mediterranean. Aquatic Microbial Ecology 44: 1–9.

    Article  Google Scholar 

  • Schimel, J., T. C. Balser & M. Wallenstein, 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88: 1386–1394.

    Article  PubMed  Google Scholar 

  • Smalla, K., U. Wachtendorf, H. Heuer, W. Liu, L. Forney & U. T. E. Wachtendorf, 1998. Analysis of biolog GN substrate utilization patterns by microbial communities. Applied and Environmental Microbiology 64: 1220–1225.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stefanowicz, A., 2006. The biolog plates technique as a tool in ecological studies of microbial communities. Polish Journal of Environmental Studies 15: 669–676.

    CAS  Google Scholar 

  • Timoner, X., V. Acuña, D. von Schiller & S. Sabater, 2012. Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshwater Biology 57: 1565–1578.

    Article  CAS  Google Scholar 

  • Tiquia, S. M., 2010. Metabolic diversity of the heterotrophic microorganisms and potential link to pollution of the Rouge River. Environmental Pollution 158: 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  • Tooth, S., 2000. Process, form and change in dryland rivers: a review of recent research. Earth-Science Reviews 57: 67–107.

    Article  Google Scholar 

  • Tzoraki, O., N. P. Nikolaidis, Y. Amaxidis & N. T. Skoulikidis, 2007. In-stream biogeochemical processes of a temporary river. Environmental Science and Technology 41: 1225–1231.

    Article  CAS  PubMed  Google Scholar 

  • Uys, M. C. & J. H. O’Keefe, 1997. Simple words and fuzzy zones: early directions for temporary river research in South Africa. Environmental Management 21: 517–531.

    Article  PubMed  Google Scholar 

  • von Schiller, D., V. Acuña, D. Graeber, E. Martí, M. Ribot, S. Sabater, X. Timoner & K. Tockner, 2011. Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquatic Sciences 73: 485–497.

    Article  Google Scholar 

  • Wallenstein, M. D. & E. K. Hall, 2012. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109: 35–47.

    Article  Google Scholar 

  • Wetzel, R. G., 1983. Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers, The Hague, Boston, Lancaster: 346 pp.

  • Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.

    Google Scholar 

  • Williams, M. A. & C. W. Rice, 2007. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Applied Soil Ecology 35: 535–545.

    Article  Google Scholar 

  • Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus & G. N. Somero, 1982. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222.

    Article  CAS  PubMed  Google Scholar 

  • Ylla, I., I. Sanpera-Calbet, E. Vázquez, A. M. Romaní, I. Muñoz, A. Butturini & S. Sabater, 2010. Organic matter availability during pre-and post-drought periods in a Mediterranean stream. Hydrobiologia 657: 217–232.

    Article  CAS  Google Scholar 

  • Zak, J., M. R. Willing, D. L. Moorhead & H. G. Wildman, 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry 26: 1101–1108.

    Article  Google Scholar 

  • Zoppini, A., S. Amalfitano, S. Fazi & A. Puddu, 2010. Dynamics of a benthic microbial community in a riverine environment subject to hydrological fluctuations (Mulargia River, Italy). Hydrobiologia 657: 37–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Lars Pelzer for field assistance. Xisca Timoner was recipient of a PhD fellowship from the Spanish Ministry of science and technology (AP-2007-01945). This research was funded by the projects SCARCE (CONSOLIDER-INGENIO CSD2009-00065), and the CARBONET (CGL2011-30474-C02-01) of the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xisca Timoner.

Additional information

Handling editor: Stefano Amalfitano

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timoner, X., Acuña, V., Frampton, L. et al. Biofilm functional responses to the rehydration of a dry intermittent stream. Hydrobiologia 727, 185–195 (2014). https://doi.org/10.1007/s10750-013-1802-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1802-4

Keywords

Navigation