Skip to main content
Log in

Identification of total phosphate, submerged vegetation cover and zooplankton size thresholds for success of biomanipulation in peri-urban eutrophic ponds

  • PLANTS IN HYDROSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In small shallow lakes and ponds, the clear-water state can generally be maintained at higher nutrient concentrations compared to larger shallow lakes. The main objective of this study was to identify thresholds for total phosphorus (TP), submerged vegetation cover and zooplankton size that determine biomanipulation success in peri-urban eutrophic ponds. Additionally, the relationship between transparency and TP is discussed with regard to similar relationships and thresholds reported for shallow lakes. Using classification trees, a threshold TP concentration of 0.300 mg P L−1 was determined below which a clear-water state was generally maintained after biomanipulation. When the average TP concentration was >0.300 mg P L−1, the stability of the clear-water state largely depended on the presence of sufficiently large zooplankton (>0.87 mm) or a submerged vegetation cover of >82% at some point during the year. This threshold TP concentration is considerably higher than the threshold of 0.1 mg L−1 which is generally suggested for longer-term success of biomanipulation in shallow lakes. Such threshold nutrient concentration is important when restoring ecological quality in eutrophic small lakes and ponds. Extended follow-up of biomanipulation success in eutrophic ponds could provide more insight into the feasibility of these thresholds on the longer term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA-AWWA-WEF, 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.

    Article  Google Scholar 

  • Breiman, L., J. H. Freidman, R. A. Olshen & C. J. Stone, 1984. Classification and Regression Trees. Wadsworth, Belmont.

    Google Scholar 

  • Cottenie, K., N. Nuytten, E. Michels & L. De Meester, 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 339–350.

    Article  Google Scholar 

  • De Backer, S., 2011. Restoration of ecological quality in eutrophic peri-urban ponds through complete fish removal and water drawdown: biotic interactions, evaluation and implications for management (PhD Thesis). VUBPRESS, Brussels: 169.

  • De Backer, S., S. Van Onsem & L. Triest, 2010. Influence of submerged vegetation and fish abundance on water clarity in peri-urban eutrophic ponds. Hydrobiologia 656: 255–267.

    Article  CAS  Google Scholar 

  • De Backer, S., S. Teissier & L. Triest, 2012. Stabilizing the clear-water state in eutrophic ponds after biomanipulation: submerged vegetation versus fish recolonization. Hydrobiologia 689: 161–176.

    Article  Google Scholar 

  • Grimm, M. P., 1989. Northern pike (Esox lucius L.) and aquatic vegetation, tools in the management of fisheries and water quality in shallow waters. Hydrobiological Bulletin 23: 59–65.

    Article  Google Scholar 

  • Ha, J.-Y., M. Saneyoshi, H.-D. Park, H. Toda, S. Kitano, T. Homma, T. Shiina, Y. Moriyama, K.-H. Chang & T. Hanazato, 2013. Lake restoration by biomanipulation using piscivore and Daphnia stocking; results of the biomanipulation in Japan. Limnology 14: 19–30.

    Article  Google Scholar 

  • Hobbs, W. O., J. M. Ramstack Hobbs, T. LaFrançois, K. D. Zimmer, K. M. Theissen, M. B. Edlund, N. Michelutti, M. G. Butler, M. A. Hanson & T. J. Carlson, 2012. A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake. Ecological Applications 22: 1483–1496.

    Article  PubMed  Google Scholar 

  • Hosper, S. H. & E. Jagtman, 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200(201): 523–534.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200(201): 219–227.

    Article  Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation: the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Jyväsjärvi, J., H. Immonen, P. Högmander, H. Högmander, H. Hämäläinen & J. Karjalainen, 2013. Can lake restoration by fish removal improve the status of profundal macroinvertebrate assemblages? Freshwater Biology 58: 1149–1161.

    Article  Google Scholar 

  • Lammens, E., 1999. The central role of fish in lake restoration and management. Hydrobiologia 395: 191–198.

    Article  Google Scholar 

  • Marlier, G., 1971. Les étangs de la Fôret de Soignes. Les Naturalistes Belges 52: 177–192.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.31. MjM Software, Gleneden Beach, Oregon.

  • Meijer, M.-L., M. W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200(201): 303–315.

    Article  Google Scholar 

  • Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. J. de Jong & J. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275(276): 457–466.

    Article  Google Scholar 

  • Meijer, M.-L., I. de Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 408(409): 13–30.

    Article  Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernandez-Alaez, M. Fernandez-Alaez, R. J. M. Franken, F. Garcia-Criado, E. M. Gross, M. Gyllstrom, L. A. Hansson, K. Irvine, A. Jarvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Kunnap, A. Laas, E. Lille, B. Lorens, H. Luup, M. R. Miracle, P. Noges, T. Noges, M. Nykanen, I. Ott, W. Peczula, E. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujoe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes: a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13(6): 507–549.

    Article  Google Scholar 

  • Peretyatko, A., J. J. Symoens & L. Triest, 2007a. Impact of macrophytes on phytoplankton in eutrophic peri-urban ponds, implications for pond management and restoration. Belgian Journal of Botany 140(1): 83–99.

    Google Scholar 

  • Peretyatko, A., S. Teissier, J. J. Symoens & L. Triest, 2007b. Phytoplankton biomass and environmental factors over a gradient of clear to turbid peri-urban ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 17(6): 584–601.

    Article  Google Scholar 

  • Peretyatko, A., S. Teissier, S. De Backer & L. Triest, 2009. Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Hydrobiologia 634: 125–135.

    Article  Google Scholar 

  • Roozen, F. C. J. M., M. Lürling, H. Vlek, E. A. J. Van Der Pouw Kraan, B. W. Ibelings & M. Scheffer, 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biology 52: 977–987.

    Article  CAS  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8(8): 275–279.

    Article  CAS  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 207–212.

    Google Scholar 

  • Skov, C., O. Lousdal, P. H. Johansen & S. Berg, 2003. Piscivory of 0+ pike (Esox lucius L.) in a small eutrophic lake and its implication for biomanipulation. Hydrobiologia 506–509(1–3): 481–487.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & S. Berg, 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool 2. Effects on lower trophic levels in Lake Lyng, Denmark. Hydrobiologia 342(343): 319–325.

    Article  Google Scholar 

  • Søndergaard, M., J. P. Jensen & E. Jeppesen, 2005a. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology 50: 1605–1615.

    Article  Google Scholar 

  • Søndergaard, M., E. Jeppesen & J. P. Jensen, 2005b. Pond or lake: does it make any difference? Archiv Fur Hydrobiologie 162(2): 143–165.

    Article  Google Scholar 

  • Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short- and long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.

    Article  Google Scholar 

  • Søndergaard, M., R. Bjerring & E. Jeppesen, 2013. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 710: 95–107.

    Article  Google Scholar 

  • Teissier, S., A. Peretyatko, S. De Backer & L. Triest, 2012. Strength of phytoplankton–nutrient relationship: evidence from 13 biomanipulated ponds. Hydrobiologia 689: 147–159.

    Article  CAS  Google Scholar 

  • Van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1997. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York.

    Google Scholar 

  • van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72(3–4): 261–274.

    Article  Google Scholar 

  • van Donk, E., M. P. Grimm, R. D. Gulati & K. B. J. P. G., 1990. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275–289.

  • Van Geest, G. J., H. Coops, M. Scheffer & E. H. van Nes, 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10: 36–46.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Composition and biomass of phytoplankton. In Wetzel, R. G. & G. E. Likens (eds), Limnological Analyses. Springer-Verlag, New York: 147–174.

    Chapter  Google Scholar 

  • Willame, R., T. Jurczak, J.-F. Iffly, T. Kull, J. Meriluoto & L. Hoffmann, 2005. Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia 551: 99–117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brussels Institute of Environment (BIM/IBGE), the Research in Brussels Action (Innoviris), the Belgian Science Policy (BELSPO) BBLOOM2 contract and OZR-BOF (Vrije Universiteit Brussel). We thank A. Peretyatko for field work, providing phytoplankton data, advice on data analysis and helpful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwig Triest.

Additional information

Guest editors: M. T. Ferreira, M. O’Hare, K. Szoszkiewicz & S. Hellsten / Plants in Hydrosystems: From Functional Ecology to Weed Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Backer, S., Teissier, S. & Triest, L. Identification of total phosphate, submerged vegetation cover and zooplankton size thresholds for success of biomanipulation in peri-urban eutrophic ponds. Hydrobiologia 737, 281–296 (2014). https://doi.org/10.1007/s10750-013-1739-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1739-7

Keywords

Navigation