Skip to main content
Log in

Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta?

  • PLANTS IN HYDROSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the Mississippi River Delta, the common wetland grass, Phragmites australis, displays high genetic diversity, as several genetically distinct populations are co-occurring. Differences in salinity tolerance may be an important factor determining these populations’ distribution in the delta. Our study investigated the salt tolerance of four genotypes exposed to 0, 10, 20, 30, and 40 ppt salinity. The growth rate, biomass, and the light-saturated photosynthetic rate were stimulated at 10 ppt salinity and inhibited at salinities higher than 20 ppt, compared to controls. Increased concentrations of Cl and Na+ were found in the roots and older leaves of plants exposed to high salinities. Salt tolerance levels differed between genotypes. High salinity tolerance was mainly achieved by reduced water uptake and vacuole compartmentalization of toxic ions. The most tolerant genotype sustained biomass and photosynthesis even at 40 ppt, whereas the most sensitive genotype did not survive salinities higher than 20 ppt. Our findings show that the observed occurrence of different genotypes in the Mississippi River Delta is correlated to genetically determined differences in salinity tolerance. Further investigations are needed to better understand the role that salinity tolerance plays in the invasion of certain introduced P. australis genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achenbach, L., C. Lambertini & H. Brix, 2012. Phenotypic traits of Phragmites australis clones are not related to ploidy level and distribution range. AoB Plants. doi:10.1093/aobpla/pls017.

    PubMed Central  PubMed  Google Scholar 

  • Achenbach, L., F. Eller, L. Nguyen & H. Brix, 2013. Differences in salinity tolerance of genetically distinct Phragmites australis clones. AoB Plants. doi:10.1093/aobpla/plt019.

    Google Scholar 

  • Bazihizina, N., E. G. Barrett-Lennard & T. D. Colmer, 2012. Plant growth and physiology under heterogeneous salinity. Plant and Soil 354: 1–19.

    Article  CAS  Google Scholar 

  • Brix, H., 1999. Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites australis)—introduction. Aquatic Botany 64: 179–184.

    Article  Google Scholar 

  • Bruton, M. N. & K. H. Cooper, 1980. Studies on the Ecology of Maputaland. Rhodes University, Grahamstown & Natal Branch of the Wildlife Society of South Africa, Durban.

    Google Scholar 

  • Chambers, R. M., L. A. Meyerson & K. Saltonstall, 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64: 261–273.

    Article  Google Scholar 

  • Clevering, O. A. & J. Lissner, 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquatic Botany 64: 185–208.

    Article  Google Scholar 

  • Den, H. C., J. Kvet & H. Sukopp, 1989. Reed: a common species in decline. Aquatic Botany 35: 1–4.

    Article  Google Scholar 

  • Fediuc, E., S. H. Lips & L. Erdei, 2005. O-Acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. Journal of Plant Physiology 162: 865–872.

    Article  CAS  PubMed  Google Scholar 

  • Gao, L., S. Tang, L. Zhuge, M. Nie, Z. Zhu, B. Li & J. Yang, 2012. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China. Plos One 7: e43334.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorai, M., M. Ennajeh, H. Khemira & M. Neffati, 2010. Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants. Flora 205: 462–470.

    Article  Google Scholar 

  • Gorai, M., M. Ennajeh, H. Khemira & M. Neffati, 2011. Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiologiae Plantarum 33: 963–971.

    Article  CAS  Google Scholar 

  • Hanganu, J., G. Mihail & H. Coops, 1999. Responses of ecotypes of Phragmites australis to increased seawater influence: a field study in the Danube Delta, Romania. Aquatic Botany 64: 351–358.

    Article  Google Scholar 

  • Hansen, D. L., C. Lambertini, A. Jampeetong & H. Brix, 2007. Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquatic Botany 86: 269–279.

    Article  Google Scholar 

  • Hauber, D. P., K. Saltonstall, D. A. White & C. S. Hood, 2011. Genetic variation in the common reed, Phragmites australis, in the Mississippi River Delta marshes: evidence for multiple introductions. Estuaries and Coasts 34: 851–862.

    Article  CAS  Google Scholar 

  • Hirtreiter, J. & D. Potts, 2012. Canopy structure, photosynthetic capacity and nitrogen distribution in adjacent mixed and monospecific stands of Phragmites australis and Typha latifolia. Plant Ecology 213: 821–829.

    Article  Google Scholar 

  • Hughes, H. & J. Hughes, 1992. A Directory of African Wetlands. IUCN, Gland; UNEP, Nairobi; WCMC, Cambridge.

  • Lambertini, C., M. H. G. Gustafsson, J. Frydenberg, J. Lissner, M. Speranza & H. Brix, 2006. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Systematics and Evolution 258: 161–182.

    Article  Google Scholar 

  • Lambertini, C., M. H. G. Gustafsson, J. Frydenberg, M. Speranza & H. Brix, 2008. Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquatic Botany 88: 160–170.

    Article  CAS  Google Scholar 

  • Lambertini, C., I. A. Mendelssohn, M. H. G. Gustafsson, B. Olesen, T. Riis, B. K. Sorrell & H. Brix, 2012a. Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. American Journal of Botany 99: 538–551.

    Article  CAS  PubMed  Google Scholar 

  • Lambertini,C., F. Eller, L. Achenbach, L. Nguyen, W. Guo & H. Brix, 2012b. Revisiting Phragmites australis variation in the Danube Delta with DNA molecular techniques. Water Resources and Wetlands, Tulcea: 142–149.

  • Lessmann, J. M., H. Brix, V. Bauer, O. A. Clevering & F. A. Comin, 2001. Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations. Aquatic Botany 69: 109–126.

    Article  CAS  Google Scholar 

  • Lissner, J. & H. H. Schierup, 1997. Effects of salinity on the growth of Phragmites australis. Aquatic Botany 55: 247–260.

    Google Scholar 

  • Lissner, J., H. H. Schierup, F. A. Comin & V. Astorga, 1997. Effects of climate on the salt tolerance of the common reed (Phragmites australis). Plant Physiology 114: 524.

    Google Scholar 

  • Lissner, J., H. H. Schierup, F. A. Comin & V. Astorga, 1999. Effect of climate on the salt tolerance of two Phragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquatic Botany 64: 317–333.

    Article  CAS  Google Scholar 

  • Matsushita, N. & T. Matoh, 1991. Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiologia Plantarum 83: 170–176.

    Article  CAS  Google Scholar 

  • Meadows, R. E. & K. Saltonstall, 2007. Distribution of native and introduced Phragmites australis in freshwater and oligohaline tidal marshes of the Delmarva Peninsula and southern New Jersey. Journal of the Torrey Botanical Society 134: 99–107.

    Article  Google Scholar 

  • Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Pagter, M., C. Bragato & H. Brix, 2005. Tolerance and physiological responses of Phragmites australis to water deficit. Aquatic Botany 81: 285–299.

    Article  Google Scholar 

  • Pagter, M., C. Bragato, M. Malagoli & H. Brix, 2009. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany 90: 43–51.

    Article  CAS  Google Scholar 

  • Parida, A. K. & A. B. Das, 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324–349.

    Google Scholar 

  • Pauca-Comanescu, M., O. A. Clevering, J. Hanganu & M. Gridin, 1999. Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquatic Botany 64: 223–234.

    Article  Google Scholar 

  • Saltonstall, K., 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America 99: 2445–2449.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saltonstall, K., P. M. Peterson & R. J. Soreng, 2004. Recognition of Phragmites australis subsp Americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA Contributions to Botany 21: 683–692.

    Google Scholar 

  • Vasquez, E. A., E. P. Glenn, J. J. Brown, G. R. Guntenspergen & S. G. Nelson, 2005. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Marine Ecology-Progress Series 298: 1–8.

    Article  Google Scholar 

  • Vasquez, E. A., E. P. Glenn, G. R. Guntenspergen, J. J. Brown & S. G. Nelson, 2006. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. American Journal of Botany 93: 1784–1790.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carla Lambertini for her essential guidance in choosing the clones and for her valuable comments on phylogeny and genotypic traits. Prof. Irving A. Mendelssohn and Shuwen Li from Louisiana State University, Prof. David A. White, Donald P. Hauber and Craig S. Hood from Loyola University are thanked for introducing us to the GC Delta and for help with the collection of the plant material. This work was funded by The Danish Council for Independent Research, Natural Sciences, via a grant to H.B. Additional travel and salary support was provided by the John P. Laborde Endowed Chair for Sea Grant Research and Technology Transfer Program. The Carlsberg Foundation funded the Li-Cor 6400XT equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Achenbach.

Additional information

Guest editors: M. T. Ferreira, M. O’Hare, K. Szoszkiewicz & S. Hellsten / Plants in Hydrosystems: From Functional Ecology to Weed Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achenbach, L., Brix, H. Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta?. Hydrobiologia 737, 5–23 (2014). https://doi.org/10.1007/s10750-013-1601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1601-y

Keywords

Navigation