Skip to main content

Advertisement

Log in

Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria

  • WATER BODIES IN EUROPE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The majority of studies comparing the response of biotic metrics to environmental stress in rivers are based on relatively small, homogeneous datasets resulting from research projects. Here, we used a large dataset from Austrian and German national river monitoring programmes (2,302 sites) to analyse the response of fish, diatom and macroinvertebrate metrics to four stressors acting at different scales (hydromorphology, physico-chemistry, riparian and catchment land use). Nutrient enrichment and catchment land use were the main discriminating stressors for all organism groups, over-ruling the effects of hydromorphological stress on the site scale. The response of fish metrics to stress was generally low, while macroinvertebrate metrics performed best. The Trophic Diatom Index (TDI) responded most strongly to all stressors in the mountain streams, while different metrics were responsive in the lowlands. Our results suggest that many rivers are still considerably affected by nutrient enrichment (eutrophication), which might directly point at implications of catchment land use. We conclude that monitoring datasets are well-suited to detect major broad-scale trends of degradation and their impact on riverine assemblages, while the more subtle effects of local-scale stressors require stream type-specific approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, D. J., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution and Systematics 35: 257–284.

    Article  Google Scholar 

  • Armitage, P. D., D. Moss, J. F. Wright & M. T. Furse, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17: 333–347.

    Article  CAS  Google Scholar 

  • Bain, M. B., J. T. Finn & H. E. Booke, 1988. Streamflow regulation and fish community structure. Ecology 69: 382–392.

    Article  Google Scholar 

  • Bayerisches Landesamt für Umwelt, 2012. Verfahrensanleitung für die ökologische Bewertung von Fließgewässern zur Umsetzung der EU-Wasserrahmenrichtlinie: Makrophyten und Phytobenthos. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/verfahrensanleitung/doc/verfahrensanleitung_fg.pdf.

  • Birk, S., W. Bonne, A. Borja, S. Brucet, A. Courrat, S. Poikane, A. Solimini, W. van de Bund, N. Zampoukas & D. Hering, 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicators 18: 31–41.

    Article  Google Scholar 

  • Blann, K., J. L. Anderson, G. Sands & B. Vondracek, 2009. Effects of agricultural drainage on aquatic ecosystems: a Review. Critical Reviews in Environmental Science and Technology 39: 909–1001.

    Article  CAS  Google Scholar 

  • Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW), 2010. Wassergüte in Österreich–Jahresbericht 2010. http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/wasser/JB2010/Jahresbericht_2010_v9.3.pdf.

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • CEMAGREF, 1982. Etude des méthodes biologiques d’appréciation quantitative de la qualité des eaux. Rapport Cemagref Q.E. Lyon-A.F. Bassin Rhône-Méditérranée-Corse: 1–218.

  • CEN, 2003. Water Quality—Sampling of Fish with Electricity. European standard—EN 14011:2003. European Committee for Standardization, Brussels: 18 pp.

  • Clapcott, J. E., K. J. Collier, R. G. Death, E. O. Goodwin, J. S. Harding, D. Kelly & J. R. Leathwick, 2012. Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshwater Biology 57: 74–90.

    Article  Google Scholar 

  • Commission of the European Communities. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Water Framework Directive. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:en:PDF.

  • Cox, E. J., 1991. What is the basis for using diatoms as monitors of river quality? In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institut für Botanik, Universität Innsbruck, Innsbruck: 33–40.

    Google Scholar 

  • Cuffney, T. F., M. R. Meador, S. D. Porter & M. E. Gurtz, 2000. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington. Environmental Monitoring and Assessment 64: 259–270.

    Article  CAS  Google Scholar 

  • Cutler, D. R., T. C. Edwards Jr, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson & J. J. Lawler, 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.

    Article  PubMed  Google Scholar 

  • de Zwart, D., L. Posthuma, M. Gevrey, P. C. von der Ohe & E. de Deckere, 2009. Diagnosis of ecosystem impairment in a multiple-stress context—how to formulate effective river basin management plans. Integrated Environmental Assessment and Management 5: 38–49.

    Article  PubMed  Google Scholar 

  • Dell’Uomo, A., 1996. Assessment of water quality of an Apennine river as a pilot study for diatom-based monitoring of Italian watercourses. In Whitton, B. A. & E. Rott (eds), Use of Algae for Monitoring Rivers II. Institut für Botanik, Universität Innsbruck, Innsbruck: 65–73.

    Google Scholar 

  • Dußling, U., R. Berg, H. Klinger & C. Wolter, 2004. Assessing the ecological status of river systems using fish assemblages. In Steinberg, C., W. Calmano, H. Klapper & R. D. Wilken (eds), Handbuch Angewandte Limnologie. Ecomed, Landsberg am Lech, Germany: 1–84.

    Google Scholar 

  • EFI+ Consortium, 2009. Manual for the application of the new European Fish Index–EFI+. A Fish-Based Method to Assess the Ecological Status of European Running Waters in Support of the Water Framework Directive. BOKU, Vienna: 45 pp. http://efi-plus.boku.ac.at.

  • Elith, J. & J. Leathwick, 2011. Boosted Regression Trees for Ecological Modelling. http://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf.

  • Elith, J., J. R. Leathwick & T. Hastie, 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813.

    Article  PubMed  CAS  Google Scholar 

  • European Environment Agency (EEA), 2000. CORINE Land Cover Technical Guide–Addendum 2000. http://www.eea.europa.eu/publications/tech40add.

  • European Environment Agency (EEA), 2010. Nutrients in Freshwater (CSI 020)—Assessment Published Dec 2010. http://www.eea.europa.eu/data-and-maps/indicators/nutrients-in-freshwater/nutrients-in-freshwater-assessment-published-4.

  • European Environment Agency (EEA), 2011. Hazardous Substances in Europe′s Fresh and Marine Waters—An Overview. Technical Report No 8/2011. http://www.eea.europa.eu/publications/hazardous-substances-in-europes-fresh.

  • European Environment Agency (EEA), 2012. EEA Water 2012 Report. Thematic assessment on Ecological status and pressures. Version 2.0. http://forum.eionet.europa.eu/nrc-eionet-freshwater/library/public-section/2012-state-water-thematic-assessments/ecological-and-chemical-status-draft-feb2012/download/1/Ecological%20and%20chemical%20status%20and%20pressures%20draft%20for%20consultation%20Feb201s.pdf.

  • Extence, C. A., D. M. Balbi & R. P. Chadd, 1999. River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers: Research & Management 15: 545–574.

    Article  Google Scholar 

  • Feld, C. K., 2012. Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes. Freshwater Biology. doi:10.1111/fwb.12077.

  • Feld, C. K. & D. Hering, 2007. Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology 52: 1380–1399.

    Article  Google Scholar 

  • Fitzgerald, E. P., W. B. Bowden, S. P. Parker & M. L. Kline, 2012. Urban impacts on streams are scale-dependent with nonlinear influences on their physical and biotic recovery in Vermont, United States. Journal of the American Water Resources Association (JAWRA): 1–19. doi:10.1111/j.1752-1688.2012.00639.x.

  • Frissel, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • Gomez, N. & M. Licursi, 2001. The Pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35: 173–181.

    Article  CAS  Google Scholar 

  • Haase, P., S. Lohse, S. Pauls, K. Schindehütte, A. Sundermann, P. Rolauffs & D. Hering, 2004. Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macroinvertebrate sampling and sorting. Limnologica 34: 349–365.

    Article  Google Scholar 

  • Haase, P., D. Hering, S. C. Jahnig, A. W. Lorenz & A. Sundermann, 2012. The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia (this issue). doi:10.1007/s10750-012-1255-1

  • Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones, 1998. Stream biodiversity: the ghost of land use past. Proceedings of the National Academy of Sciences 95: 14843–14847.

    Article  CAS  Google Scholar 

  • Haunschmid, R., G. Wolfram, T. Spindler, W. Honsig-Erlenburg, R. Wimmer, A. Jagsch, E. Kainz, K. Hehenwarter, B. Wagner, R. Konecny, R. Riedmüller, G. Ibel, B. Sasano & N. Schotzko, 2006. Erstellung einer fischbasierten Typologie österreichischer Fließgewässer sowie einer Bewertungsmethode des Fischökologischen Zustandes gemäß EU-Wasserrahmenrichtlinie. BAW Band 23, 104 pp, ISBN:3-901605-23-1.

  • Hering, D., C. Meier, C. Rawer-Jost, C. K. Feld, R. Biss, A. Zenker, A. Sundermann, S. Lohse & J. Böhmer, 2004a. Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica 34: 398–415.

    Article  Google Scholar 

  • Hering, D., O. Moog, L. Sandin & P. F. M. Verdonschot, 2004b. Overview and application of the AQEM assessment system. Hydrobiologia 516: 1–20.

    Article  Google Scholar 

  • Hering, D., R. K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz & P. F. M. Verdonschot, 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51: 1757–1785.

    Article  Google Scholar 

  • Hijmans, R. J., S. Phillips, J. Leathwick & J. Elith, 2011. Dismo: Species distribution modeling. R package version 0.7–2. http://CRAN.R-project.org/package=dismo.

  • Hürlimann, J. & P. Niederhauser, 2007. Methoden zur Untersuchung und Beurteilung der Fliessgewässer. Kieselalgen Stufe F (flächendeckend). Umwelt-Vollzug Nr. 0740. Bundesamt für Umwelt, Bern: 130.

    Google Scholar 

  • IMPRESS, 2002. Guidance for the analysis of pressures and impacts in accordance with the Water Framework Directive. Common Implementation Strategy Working Group 2.1, 156 pp., Office for Official Publications of the European Communities. ISBN:92-894-5123.

  • Johnson, R. K. & D. Hering, 2009. Response of taxonomic groups in streams to gradients in resource and habitat characteristics. Journal of Applied Ecology 46: 175–186.

    Article  Google Scholar 

  • Jüttner, I., S. Sharma, B. M. Dahal, S. J. Ormerod, P. J. Chimonides & E. J. Cox, 2003. Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology 48: 2065–2084.

    Article  Google Scholar 

  • Kail, J., J. Arle & S. C. Jähnig, 2012. Limiting factors and thresholds for macroinvertebrate assemblages in European rivers: empirical evidence from three datasets on water quality, catchment urbanization, and river restoration. Ecological Indicators 18: 63–72.

    Article  CAS  Google Scholar 

  • Kelly, M. G., C. J. Penny & B. A. Whitton, 1995. Comparative performance of benthic diatom indices to assess river water quality. Hydrobiologia 302: 179–188.

    Article  CAS  Google Scholar 

  • Lecointe, C., M. Coste & J. Prygiel, 2003. Omnidia 3.2. Diatom index software including diatom database with taxonomic names, references and codes of 11645 diatom taxa. http://omnidia.free.fr/omnidia_english.htm.

  • Lobo, E. A., V. L. M. Callegaro & E. P. Bender, 2002. Utilizacao de Algas Diatomaceas Epiliticas como Indicadores da Qualidade da Agua em Rios e Arroios da Regiao Hidrografica do Guaiba, RS, Brasil. EDUNISC, Santa Cruz do Sul.

    Google Scholar 

  • Marzin, A., V. Archaimbault, J. Belliard, C. Chauvin, F. Delmas & D. Pont, 2012a. Ecological assessment of running waters: do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological Indicators 23: 56–65.

    Article  CAS  Google Scholar 

  • Marzin, A., P. F. M. Verdonschot & D. Pont, 2012b. The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia (this issue). doi:10.1007/s10750-012-1254-2.

    Google Scholar 

  • Meier, C., J. Böhmer, R. Biss, C. K. Feld, P. Haase, A. Lorenz, C. Rawer-Jost, P. Rolauffs, K. Schindehütte, F. Schöll, A. Sundermann, A. Zenker & D. Hering, 2006. Weiterentwicklung und Anpassung des nationalen Bewertungssystems für Makrozoobenthos an neue internationale Vorgaben. Abschlussbericht im Auftrag des Umweltbundesamtes. http://www.fliessgewaesserbewertung.de.

  • Moog, O. (ed.), 1995. Fauna Aquatica Austriaca—a comprehensive species inventory of Austrian aquatic organisms with ecological notes, 1st ed. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Wien, 248 pp.

    Google Scholar 

  • Morley, S. A. & J. R. Karr, 2002. Assessing and restoring the health of urban streams in the Puget Sound basin. Conservation Biology 16: 1498–1509.

    Article  Google Scholar 

  • Nijboer, R. C. & A. Schmidt-Kloiber, 2004. The effect of excluding taxa with low abundances or taxa with small distribution ranges on ecological assessment. Hydrobiologia 516: 349–366.

    Google Scholar 

  • Ofenböck, T., O. Moog, A. Hartmann & I. Stubauer, 2010. Leitfaden zur Erhebung der biologischen Qualitätselemente Teil A2—Markozoobentos. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien. http://wisa.lebensministerium.at/article/articleview/74897/1/27032/.

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O`Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner, 2011. Vegan: Community ecology package. R package version 1.17-10. http://CRAN.R-project.org/package=vegan.

  • Patrick, R., 1986. Diatoms as indicators of changes in water quality. In Ricard, M. (ed.), Proceedings of the 8th International Diatom Symposium. Koeltz Scientific Books, Koenigstein: 759–766.

    Google Scholar 

  • Pfister, P. & E. Pipp, 2010. Leitfaden zur Erhebung der biologischen Qualitätselemente Teil A3—Phytobenthos. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien. http://wisa.lebensministerium.at/article/articleview/74897/1/27032/.

  • Podraza, P., H. Schuhmacher & M. Sommerhäuser, 2000. Composition of macroinvertebrate feeding groups as a bioindicator in running waters. Verhandlungen der internationalen Vereineinigung für theoretische und angewandte Limnologie 27: 3066–3069.

    Google Scholar 

  • Prygiel, J., P. Carpentier, S. Almeida, M. Coste, J.-C. Druart, L. Ector, D. Guillard, M.-A. Honoré, R. Iserentant, P. Ledeganck, et al., 2002. Determination of the biological diatom index (IBD NF T 90–354): results of an intercomparison exercise. Journal of Applied Phycology 14: 27–39.

    Article  Google Scholar 

  • R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org.

  • Ridgeway, G. 2010. gbm: Generalized Boosted Regression Models. R package version 1.6-3.1. http://CRAN.R-project.org/package=gbm.

  • Rott, E., P. Pfister, H. van Dam, E. Pipp, K. Pall, N. Binder & K. Ortler, 1999. Indikationslisten für Aufwuchsalgen. Teil 2: Trophieindikation sowie geochemische Präferenz, taxonomische und toxikologische Anmerkungen. Bundesministerium für Land- und Forstwirtschaft, Wien: 248 pp.

    Google Scholar 

  • Schaumburg, J., C. Schranz, J. Foerster, A. Gutowski, G. Hofmann, P. Meilinger, S. Schneider & U. Schmedtje, 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34: 283–301.

    Article  Google Scholar 

  • Schiefele, S. & C. Schreiner, 1991. Use of diatoms for monitoring nutrient enrichment acidification and impact salts in Germany and Austria. In Whitton, B. A., E. Rott & G. Friedrich (eds), Use of Algae for Monitoring Rivers. Institut für Botanik, Universität Innsbruck, Innsbruck: 103–110.

    Google Scholar 

  • Schweder, H., 1992. Neue Indizes für die Bewertung des ökologischen Zustandes von Fließgewässern, abgeleitet aus der Makroinvertebraten-Ernährungstypologie. Limnologie Aktuell 3: 353–377.

    Google Scholar 

  • Sládecek, V., 1986. Diatoms as indicators of organic pollution. Acta Hydrochydrobiol. 14: 555–566.

    Google Scholar 

  • Smith, A. J. & C. P. Tran, 2010. A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers. Journal of the North American Benthological Society 29: 875–891.

    Article  Google Scholar 

  • Stevenson, R. J., B. H. Hill, A. T. Herlihy, L. L. Yuan & S. B. Norton, 2008. Algae-P relationships, thresholds, and frequency distributions guide nutrient criterion development. Journal of the North American Benthological Society 27: 783–799.

    Article  Google Scholar 

  • Stoate, C., N. D. Boatman, R. J. Borralho, C. R. Carvalho, G. R. de Snoo & P. Eden, 2001. Ecological impacts of arable intensification in Europe. Journal of Environmental Management 63: 337–365.

    Article  PubMed  CAS  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 2003. CANOCO for Windows version 4.51. Biometris-Plant Research International, Wageningen.

  • ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Advances in ecological research 18: 271–317.

    Article  Google Scholar 

  • Tockner, K., M. Pusch, D. Borchardt & M. S. Lorgang, 2010. Multiple stressors in coupled river—floodplain ecosystems. Freshwater Biology 55: 135–151.

    Article  Google Scholar 

  • Umweltbundesamt (UBA), 2010. Wasserwirtschaft in Deutschland. Teil 2—Gewässergüte. http://www.umweltdaten.de/publikationen/fpdf-l/3470.pdf.

  • Wang, L., J. Lyons, P. Kanehl & R. Gatti, 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22: 6–12.

    Article  Google Scholar 

  • Wang, L., J. Lyons, P. Kanehl & R. Bannerman, 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management 28: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., J. Lyons & P. Kanehl, 2003. Impacts of urban land cover on trout streams in Wisconsin and Minnesota. Transactions of the American Fisheries Society 132: 825–839.

    Article  Google Scholar 

  • Wang, L., D. M. Robertson & P. J. Garrison, 2007. Linkages between nutrients and assemblages of macroinvertebrates and fish in wadeable streams: implication to nutrient criteria development. Environmental management 39: 194–212.

    Article  PubMed  Google Scholar 

  • Watanabe, T., K. Asai, A. Houki, S. Tanaka & T. Hizuka, 1986. Saprophilous and eurysaprobic diatom taxa to organic water pollution and diatom assemblages index (DAIpo). Diatom 2: 23–73.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Piet Verdonschot, ALTERRA, Netherlands, for calculation of diatom metrics by OMNIDIA. We gratefully acknowledge the provision of biotic and environmental data by the following institutions and projects: Austrian Federal Ministry for Agriculture, Forestry, Environment and Water Management (including all Austrian Federal States); Federal Agency for Water Management, Institute of Water Ecology, Fisheries and Lake Research; Office of the Provincial Government of Lower Austria; German Federal States Bavaria, Hesse, Rhineland-Palatinate, Northrhine-Westphalia, Lower Saxony, Schleswig–Holstein, Mecklenburg-Vorpommern, Sachsen-Anhalt, Saxony and Thuringia; AQEM project; STAR project. We thank Martin Seebacher for patiently compiling and extracting data. We are also grateful for the comments of an anonymous reviewer, which helped improve the manuscript. This paper results from the WISER project (Water bodies in Europe: Integrative Systems to assess Ecological status and Recovery) funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change) (contract No. 226273), www.wiser.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Dahm.

Additional information

Guest editors: C. K. Feld, A. Borja, L. Carvalho & D. Hering / Water bodies in Europe: integrative systems to assess ecological status and recovery

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahm, V., Hering, D., Nemitz, D. et al. Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria. Hydrobiologia 704, 389–415 (2013). https://doi.org/10.1007/s10750-012-1431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1431-3

Keywords

Navigation