Skip to main content

Advertisement

Log in

Ferry wakes increase seaweed richness and abundance in a sheltered rocky intertidal habitat

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Because hydrodynamic regimes influence community assemblages, commercial ferry traffic can directly affect neighboring marine ecosystems by altering water movement. One of the largest ferry fleets in the world traverses the calm, protected waters of the Canadian Gulf Islands (British Columbia). To address the effects of ferry wakes on rocky marine intertidal communities, we examined community assemblages in sites impacted by ferry wakes (N = 5) relative to geographically similar control sites not directly exposed to ferry wakes (N = 6). Intertidal communities were significantly different between wake-influenced and control sites. Further analyses revealed that community level differences resulted from differences in seaweed assemblages, while invertebrate assemblages were similar. Sites exposed to ferry traffic displayed significantly greater overall seaweed abundance and seaweed species richness. Nitrate and nitrite concentrations, salinity, fetch, and tidal zonation were not significantly different between wake-impacted and control sites. However, dissolution blocks revealed that wake-impacted sites experienced increased overall water movement. Furthermore, block dissolution was negatively associated with distance from nearest ferry route and not fetch. Although dissolution block cannot disentangle effects of increased flow versus waves resulting from ferry wakes, we conclude that increased overall water movement from frequent and proximate ferry traffic stimulates primary production in rocky intertidal marine seaweeds by ameliorating mass transfer limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Biber, P. D. & E. A. Irlandi, 2006. Temporal and spatial dynamics of macroalgal communities along an anthropogenic salinity gradient in Biscayne Bay (Florida, USA). Aquatic Botany 85: 65–77.

    Article  Google Scholar 

  • Bishop, M. J., 2005. Compensatory effects of boat wake and dredge spoil disposal on assemblages of macroinvertebrates. Estuaries 28(4): 510–518.

    Article  Google Scholar 

  • Bishop, M., 2007. Impacts of boat-generated waves on macroinfauna: Towards a mechanistic understanding. Journal of Experimental Marine Biology and Ecology 343: 187–196.

    Article  Google Scholar 

  • Bishop, M. & M. Chapman, 2004. Managerial decisions as experiments: an opportunity to determine the ecological impact of boat-generated waves on macrobenthic infauna. Estuarine, Coastal and Shelf Science 61: 613–622.

    Article  Google Scholar 

  • Boizard, S. D. & R. E. DeWreede, 2006. Inexpensive water motion measurement devices and techniques and their utility in macroalgal ecology: a review. Science Asia 32: 43–49.

    Article  Google Scholar 

  • Blamey, L. K. & G. M. Brance, 2009. Habitat diversity relative to wave action on rocky shores: implications for the selectin of marine protected area. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 645–657.

    Article  Google Scholar 

  • Burrows, M. T., R. Harvey & L. Robb, 2008. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Marine Ecology Progress Series 353: 1–12.

    Article  Google Scholar 

  • Burkepile, D. E. & M. E. Hay, 2006. Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 87(12): 3128–3139.

    Article  PubMed  Google Scholar 

  • Bustamante, R. & G. Branch, 1996. Large scale patterns and trophic structure of southern African rocky shores: the roles of geographic variation and wave exposure. Journal of Biogeography 23: 339–351.

    Article  Google Scholar 

  • Carpenter, R. C. & S. L. Williams, 2007. Mass transfer limitation of photosynthesis of coral reef algal turfs. Marine Biology 151: 435–450.

    Article  Google Scholar 

  • Carrington, E., 1990. Drag and dislodgement of an intertidal macroalga: consequences of morphological variation in Mastocarpus papillatus Kützing. Journal of Experimental Marine Biology and Ecology 139: 185–200.

    Article  Google Scholar 

  • Connell, J. H., 1978. Diversity in Tropical Rain Forests and Coral Reefs High diversity of trees and corals is maintained. Science 199(4335): 1302–1310.

    Article  PubMed  CAS  Google Scholar 

  • Denny, M. W., 1988. Biology and the Mechanics of the Wave-Swept Environment. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Denny, M. W., 1993. Air and Water: The Biology and Physics of Life’s Media. Princeton University Press, Princeton, USA.

    Google Scholar 

  • Denny, M. W., L. P. Miller, M. D. Stokes, L. J. H. Hunt & B. S. T. Helmuth, 2003. Extreme water velocities: topographical amplification of wave-induced flow in the surf zone of rocky shores. Limnology and Oceanography 48: 1–8.

    Article  Google Scholar 

  • Eriksson, B. K., A. Sandström, M. Isæus, H. Schreiber & P. Karås, 2004. Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuarine Coastal and Shelf Science 61: 339–349.

    Article  Google Scholar 

  • Foster, M. S., 1975. Algal succession in a Macrocystis pyrifera forest. Marine Biology 32: 313–329.

    Article  Google Scholar 

  • Gabel, F., X.-F. Garcia, M. Brauns, A. Sukhodolov, M. Leszinski & M. T. Pusch, 2008. Resistance to ship-induced waves of benthic invertebrates in various littoral habitats. Freshwater Biology 53: 1567–1578.

    Article  Google Scholar 

  • Gabel, F., S. Stoll, P. Fischer, M. T. Pusch & X.-F. Garcia, 2011. Waves affect predator–prey interactions between fish and benthic invertebrates. Oecologia 165: 101–109.

    Article  PubMed  Google Scholar 

  • Gabrielson, P. W., T. B. Widdowson, S. C. Lindstrom, 2006. Keys to the Seaweeds and Seagrasses of Southeast Alaska, British Columbia, Washington, and Oregon. University of British Columbia Dept. of Botany (Phycological contributions), Vancouver, Canada.

  • Gerard, V. A., 1984. The light environment in a giant kelp forest: influence of Macrocystis pyrifera on spatial and temporal variability. Marine Biology 84: 189–195.

    Article  Google Scholar 

  • Harley, C. D. G. & B. S. T. Helmuth, 2003. Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnology and Oceanography 48: 1498–1508.

    Article  Google Scholar 

  • Hay, M. E., 1986. Functional geometry of seaweeds: ecological consequences of thallus laying and shape in contrasting light environments. In Givnish, T. J. (ed.), On the Economy of Plant Form and Function. Cambridge University Press, Cambridge: 635–666.

    Google Scholar 

  • Hay, M. E. & W. Fenical, 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Annual Review Ecology and Systematics 19: 111–145.

    Article  Google Scholar 

  • Hurd, C. L., P. J. Harrison & L. D. Druehl, 1996. Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites. Marine Biology 126: 205–214.

    Article  CAS  Google Scholar 

  • Hurd, C. L. & C. I. Stevens, 1997. Flow visualization around single- and multiple-bladed seaweeds with various morphologies. Journal of Phycology 33: 360–367.

    Article  Google Scholar 

  • Kautsky, L. & H. Kautsky, 1989. Algal species diversity and dominance along gradients of stress and disturbance in marine environments. Vegetatio 83: 259–267.

    Article  Google Scholar 

  • Koehl, M. A. R., W. K. Silk, H. Lian & L. Mahadevan, 2008. How kelps produce blade shapes suited to different flow regimes: a new wrinkle. Integrative and Comparative Biology 48: 834–851.

    Article  PubMed  CAS  Google Scholar 

  • Lapointe, B. E., 1997. Nutrient thresholds for bottom-up control of macroalgal Jamaica and southeast Florida. Limnology and Oceaongraphy 42: 1119–1131.

    Article  CAS  Google Scholar 

  • Lapointe, B. E., 1999. Simultaneous top-down and bottom-up forces control macroalgal blooms on coral reefs (Reply to the comment by Hughes et al.). Limnology and Oceanography 44(6): 1586–1592.

    CAS  Google Scholar 

  • Lenihan, H. S., C. H. Peterson & J. M. Allen, 1996. Does flow speed also have a direct effect on growth of active suspension-feeders: an experimental test on oysters. Limnology and Oceanography 41: 1359–1366.

    Article  Google Scholar 

  • Leonard, G. H., J. M. Levine, P. R. Schmidt & M. D. Bertness, 1998. Flow-driven variation in intertidal community structure in a Maine estuary. Ecology 79: 1395–1411.

    Article  Google Scholar 

  • Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: Importance of herbivore food preference and algal competitive abilities. American Naturalist 112: 23–39.

    Article  Google Scholar 

  • Lubchenco, J., 1980. Algal zonation in the New England rocky intertidal community: an experimental analysis. Ecology 61: 333–344.

    Article  Google Scholar 

  • Mass, T., A. Genin, U. Shavit, M. Grinstein & D. Tchernov, 2010. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences 107(6): 2527–2531.

    Article  CAS  Google Scholar 

  • McQuaid, C. D. & G. M. Branch, 1984. Influence of sea temperature, substratum, and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass. Marine Ecology Progress Series 19: 145–151.

    Article  Google Scholar 

  • Menge, B., 2000. Top-down and bottom-up community regulation in marine rocky intertidal habitats. Journal of Experimental Marine Biology and Ecology 250: 257–289.

    Article  PubMed  Google Scholar 

  • Nishihara, G. N. & R. Terada, 2010. Species richness of marine macrophytes is correlated to a wave exposure gradient. Phycological Research 58: 280–292.

    Article  Google Scholar 

  • Parnell, K. & H. Kofoed-Hansen, 2001. Wakes from large high-speed ferries in confined coastal waters: management approaches with examples from New Zealand and Denmark. Coastal Management 29: 217–237.

    Article  Google Scholar 

  • Patterson, M. R., 1992. A mass transfer explanation of metabolic scaling relations in some aquatic invertebrates and algae. Science 255(5050): 1421.

    Article  PubMed  CAS  Google Scholar 

  • Rönnberg, O., 1975. The effects of ferry traffic on rocky shore vegetation in the southern Åland Archipelgao. Merentutkimuslait Julk Havsforskningsinst Skr 239: 325–330.

    Google Scholar 

  • Soomere, T., 2005. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea. Environmental Fluid Mechanics 5: 293–323.

    Article  Google Scholar 

  • Soomere, T., 2009. Long ship waves in shallow water bodies. In Quak, E. & T. Soomere (eds), Applied Wave Mathematics. Springer, Berlin: 193–227.

    Chapter  Google Scholar 

  • Soomere, T., K. E. Parnell & I. Didenkulova, 2009. Implications of fast-ferry wakes for semi-sheltered beaches: a case study at Aegna Island, Baltic Sea. Journal of Coastal Research 56: 128–132.

    Google Scholar 

  • Steneck, S. & M. N. Dethier, 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69(3): 476–498.

    Article  Google Scholar 

  • Steneck, R. S. & L. Watling, 1982. Feeding capabilities and limitation of herbivorous mollusks: a functional group approach. Marine Biology 68: 299–319.

    Article  Google Scholar 

  • Stephenson, T. A. & A. Stephenson, 1949. The universal features of zonation between tide-marks on rocky coasts. Journal of Ecology 37(2): 289–305.

    Article  Google Scholar 

  • Stevens, C. L. & C. L. Hurd, 1997. Boundary-layers around bladed aquatic macrophytes. Hydrobiologia 346: 119–128.

    Article  Google Scholar 

  • Stewart, H. L. & R. C. Carpenter, 2003. The effects of morphology and water flow on photosynthesis of marine macroalgae. Ecology 84(11): 2999–3012.

    Article  Google Scholar 

  • Thomas, F. I. M., C. D. Cornelisen & J. M. Zande, 2000. Effects of water velocity and canopy morphology on ammonium uptake by seagrass communities. Ecology 81(10): 2704–2713.

    Article  Google Scholar 

  • Thompson, T. L. & E. P. Glenn, 1994. Plaster standards to measure water motion. Limnology and Oceaongraphy 39: 1768–1779.

    Article  Google Scholar 

  • Thomsen, M. S., T. Wernberg & G. A. Kendrick, 2004. The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata. Botanica Marina 47: 454–460.

    Article  Google Scholar 

  • Trager, G., Y. Achituv & A. Genin, 1994. Effects of prey escape ability, flow speed, and predator feeding mode on zooplankton capture by barnacles. Marine Biology 120: 251–259.

    Article  Google Scholar 

  • Wall, L. M., L. J. Walters, R. E. Grizzle & P. E. Sacks, 2005. Recreational boating activity and its impact on the recruitment and survival of the oyster Crassostra virginica on intertidal reefs in Mosquito Lagoon, Florida. Journal of Shellfish Research 24(4): 965–973.

    Google Scholar 

  • Willby, N. J., J. R. Pygott & J. W. Eaton, 2001. Inter-relationships between standing crop, biodiversity and trait attributes of hydrophytic vegetation in artificial waterways. Freshwater Biology 46: 883–902.

    Article  Google Scholar 

  • Wing, S. R. & M. R. Patterson, 1993. Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Marine Biology 116: 519–525.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chris Harley, Kerry Nickols, Stefan Storey, and Emily Carrington for their helpful comments throughout the course of this project; Mike Burrows, Ally Thompson, and Chris Lee for their help with the map creation and fetch analyses; and Mary O’Connor, Rebecca Martone, Jonathan Pruitt, and Helen Demes for their constructive criticism on earlier versions of this manuscript. Funding was provided by the National Science and Engineering Research Council grant to Christopher Harley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle W. Demes.

Additional information

Handling editor: Stuart Jenkins

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demes, K.W., Kordas, R.L. & Jorve, J.P. Ferry wakes increase seaweed richness and abundance in a sheltered rocky intertidal habitat. Hydrobiologia 693, 1–11 (2012). https://doi.org/10.1007/s10750-012-1082-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1082-4

Keywords

Navigation