Skip to main content
Log in

Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Current bioassessment efforts are focused on small wadeable streams, at least partly because assessing ecological conditions in non-wadeable large rivers poses many additional challenges. In this study, we sampled 20 sites in each of seven large rivers in the Pacific Northwest, USA, to characterize variation of benthic diatom assemblages among and within rivers relative to environmental conditions. Analysis of similarity (ANOSIM) indicated that diatom assemblages were significantly different among all the seven rivers draining different ecoregions. Longitudinal patterns in diatom assemblages showed river-specific features. Bray–Curtis dissimilarity index values did not increase as a function of spatial distance among the sampled reaches within any river but the Malheur. Standardized Mantel r of association between assemblage similarity and spatial distance among sites ranged from a high of 0.69 (Malheur) to a low of 0.18 (Chehalis). In the Malheur River, % monoraphids, nitrogen-tolerant taxa, and beta-mesosaprobous taxa all decreased longitudinally while % motile taxa, especially Nitzschia, showed an opposite trend, reflecting a strong in-stream water quality gradient. Similar longitudinal trends in water quality were observed in other rivers but benthic diatom assemblages showed either weak response patterns or no patterns. Our study indicated that benthic diatom assemblages can clearly reflect among-river factors. The relationships between benthic diatom assemblages and water quality within each river may depend on the strength of the water quality gradients, interactive effects of water quality and habitat conditions, and diatom sampling design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bahls, L. L., 1993. Periphyton bioassessment methods for Montana streams. Water Quality Bureau, Department of Health and Environmental Sciences, Helena, Montana.

  • Benke, A. & K. Cushing, 2005. Rivers of North America. Elsevier Academic Press, Burlington, MA.

    Google Scholar 

  • Bennion, H., S. Wunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwater Biology 34: 271–283.

    Article  Google Scholar 

  • Bennion, H., P. G. Appleby & G. L. Phillips, 2001. Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. Journal of Paleolimnology 26: 181–204.

    Article  Google Scholar 

  • Biggs, B. J. F., R. J. Stevenson & R. L. Lowe, 1998. A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie 143: 21–56.

    Google Scholar 

  • Brieman, L., J. H. Friedman, R. A. Olshen & C. J. Stone, 1984. Classification and Regression Trees. Wadsworth and Brooks/Cole, Pacific Grove, CA.

    Google Scholar 

  • Burns, A. & K. F. Walker, 2000. Effects of water level regulation on algal biofilms in the River Murray, South Australia. Regulated Rivers: Research & Management 16: 433–444.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Cohn, S. A., 2001. Photo-stimulated effects on diatom motility. In Häder, D. P. & M. Lebert (eds), Photomovement. Comprehensive series in photosciences, Vol. 1. Elsevier, Amsterdam: 375–401.

    Google Scholar 

  • Dadoly, J. & R. Michie, 2010. Public Comment Draft: Malheur River Basin Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WQMP). Oregon Department of Environmental Quality, Portland, OR.

    Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Flotemersch, J. E., J. B. Stribling, R. M. Hughes, L. P. Reynolds, M. J. Paul & C. Wolter, 2011. Site length for biological assessment of boatable rivers. River Research and Applications 27: 520–535.

    Article  Google Scholar 

  • Fore, L. S. & C. Grafe, 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshwater Biology 47: 2015–2037.

    Article  Google Scholar 

  • Gillett, N., Y. Pan & C. Parker, 2009. Should only live diatoms be used in the bioassessment of small mountain streams? Hydrobiologia 620: 135–147.

    Article  Google Scholar 

  • Hudon, C., S. Lalonde & P. Gagnon, 2000. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Canadian Journal of Fisheries and Aquatic Sciences 57(S1): 31–42.

    Article  Google Scholar 

  • Hughes, R. M. & A. T. Herlihy, 2007. Electrofishing distance needed to estimate consistent IBI scores in raftable Oregon rivers. Transactions of the American Fisheries Society 136: 135–141.

    Article  Google Scholar 

  • Hughes, R. M. & D. V. Peck, 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27: 837–859.

    Article  Google Scholar 

  • Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, S. S. Intelmann, S. C. Corbett, M. C. Arbogast & R. C. Hjort, 2002. Electrofishing distance needed to estimate fish species richness in raftable Oregon rivers. North American Journal of Fisheries Management 22: 1229–1240.

    Article  Google Scholar 

  • Jackson, P. L. & A. J. Kimerling, 1993. Atlas of the Pacific Northwest, 8th ed. Oregon State University Press, Corvallis.

    Google Scholar 

  • Johnson, B. L., W. B. Richardson & T. J. Naimo, 1995. Past, present, and future concepts in large river ecology. BioScience 45: 134–141.

    Article  Google Scholar 

  • Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. EPA 620/R-99/003. Environmental Monitoring and Assessment Program. U.S. Environmental Protection Agency, Corvallis, OR.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae, teil 1. Naviculaceae. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae, teil 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae, teil 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae, teil 4. Achnanthaceae, kritische erganzungen zu Navicula (lineolate) und Gomphonema. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  • Lane, C. L., J. E. Flotemersch, K. A. Blocksom & S. DeCelles, 2007. Effect of sampling method on diatom composition for use in monitoring and assessing large river condition. River Research and Applications 23: 1126–1146.

    Article  Google Scholar 

  • LaVigne, H. R., R. M. Hughes & A. T. Herlihy, 2008. Bioassessments to detect changes in Pacific Northwest river fish assemblages: a Malheur River case study. Northwest Science 82: 251–258.

    Article  Google Scholar 

  • Leland, H. V., L. R. Brown & D. K. Mueller, 2001. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshwater Biology 46: 1139–1167.

    Article  Google Scholar 

  • Mantel, N., 1967. The detection of disease clustering and generalized regression approach. Cancer Research 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Mebane, C. A., T. R. Maret & R. M. Hughes, 2003. An index of biological integrity (IBI) for Pacific Northwest rivers. Transactions of the American Fisheries Society 132: 239–261.

    Article  Google Scholar 

  • Moulton II S. R., J. G. Kennen, R. M. Goldstein & J. A. Hambrook, 2002. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program. USGS Open-File Report 02-150.

  • Naiman, R. J. & R. E. Bilby, 1998. River ecology and management in the Pacific Coastal ecoregion. In Naiman, R. J. & R. E. Bilby (eds), River ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer-Verlag, New York: 1–10.

    Google Scholar 

  • Naymik, J., Y. Pan & J. Ford, 2005. Diatom assemblages as indicators of timber harvest effects in coastal Oregon streams. Journal of North American Benthological Society 24: 569–584.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States. Volume 1. Monographs of the Academy of Natural Sciences of Philadelphia, no. 13. Academy of Natural Sciences of Philadelphia, Philadelphia, PA.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States. Volume 2. Monographs of the Academy of Natural Sciences of Philadelphia, no. 13. Academy of Natural Sciences of Philadelphia, Philadelphia, PA.

    Google Scholar 

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operations Manual for Wadeable Streams. EPA/620/R-06/003. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.

  • Peck, D. V., D. K. Averill, A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, M. R. Cappaert, T. Magee & P. A. Monaco, in press. Environmental Monitoring and Assessment Program: Surface Waters Western Pilot Study—field operations manual for nonwadeable rivers and streams. US Environmental Protection Agency, Washington, DC.

  • PRISM Climate Group, 2010. Oregon State University [available on internet at http://www.prismclimate.org, created 4 Feb 2004].

  • R Development Core Team, 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reavie, E. D., T. M. Jicha, T. R. Angradi, D. W. Bolgrien & B. H. Hill, 2010. Algal assemblages for large river monitoring: comparison among biovolume, absolute and relative abundance metrics. Ecological Indicators 10: 167–177.

    Article  CAS  Google Scholar 

  • Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology 45: 57–73.

    Article  Google Scholar 

  • Sayer, C. D., 2001. Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English lake. Freshwater Biology 46: 743–757.

    Article  CAS  Google Scholar 

  • Sgro, G. V., E. D. Reavie, T. M. Jicha, T. R. Angradi, D. W. Bolgrien & B. H. Hill, 2010. Comparison of diatom-based indices of water quality in the Upper Mississippi River Basin. Journal of Environmental Indicators 5: 48–67.

    Google Scholar 

  • Stevens, D. L. & A. R. Olsen, 2004. Spatially balanced sampling of natural resources. Journal of American Statistical Association 99: 262–278.

    Article  Google Scholar 

  • Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Synder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. EPA 841-B-99-002, 2nd ed. Office of Water, US Environmental Protection Agency, Washington, DC: 6–22.

    Google Scholar 

  • Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms Applications for the Environmental and Earth Sciences. Cambridge University Press, New York: 11–40.

    Google Scholar 

  • Stevenson, R. J. & E. F. Stoermer, 1981. Quantitative differences between benthic algal communities along a depth gradient in Lake Michigan. Journal of Phycology 17: 29–36.

    Article  Google Scholar 

  • US EPA (US Environmental Protection Agency), 1987. Handbook of methods for acid deposition studies, laboratory analysis for surface water chemistry. EPA 600/4-87/026. Office of Water, US Environmental Protection Agency, Washington, DC.

  • van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Weilhoefer, C. L. & Y. Pan, 2006. Diatom assemblages and their associations with environmental variables in Oregon coastal streams, USA. Hydrobiologia 561: 207–219.

    Article  CAS  Google Scholar 

  • Weilhoefer, C. L. & Y. Pan, 2007. A comparison of periphyton assemblages generated by two sampling protocols. Journal of North American Benthological Society 26: 308–318.

    Article  Google Scholar 

  • Welch, E. B., J. M. Jacoby & C. W. May, 1998. Stream quality. In Naiman, R. J. & R. E. Bilby (eds), River Ecology and Management: Lessons from the Pacific Coastal Ecoregion. Springer-Verlag, New York: 69–94.

    Google Scholar 

  • Wolin, J. A. & H. C. Duthie, 1999. Diatoms as indicators of water level change in freshwater lakes. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms Applications for the Environmental and Earth Sciences. Cambridge University Press, New York: 183–204.

    Google Scholar 

Download references

Acknowledgments

This research was funded by grants to Oregon State University from the U.S. Environmental Protection Agency (RM832827, Brian Hill, Project Officer), National Marine Fisheries Service (AB133FO8SE3579, Chris Jordan, Project Officer), and U.S. Fish and Wildlife Service (81450-7-J528, Mark Buettner, Project Officer). Field work was conducted by Hank LaVigne, Jason Adams, Tenzin Botsford, Ryan Emig, April Farmer, Bill Freese, Cathy Gewecke, Laurel Genzoli, Elizabeth Hughes, and Scott Wiedemer. Chemical analyses were conducted by the Cooperative Chemical Analytical Laboratory, Forest Science Department, Oregon State University, Fig. 1 was produced by Colleen Johnson, site physical habitat structure values were calculated by Curt Seeliger, and Christian Parker assisted with R programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangdong Pan.

Additional information

Handling editor: Nicholas R. Bond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y., Hughes, R.M., Herlihy, A.T. et al. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia 684, 241–260 (2012). https://doi.org/10.1007/s10750-011-0990-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0990-z

Keywords

Navigation