Skip to main content

Advertisement

Log in

Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hydrilla verticillata (Hydrocharitaceae) is a highly prolific, rooted submerged macrophyte native to Asia that has invaded aquatic systems worldwide, causing many ecological and human-related problems. Hydrilla recently invaded the Paraná River basin in Brazil, making other ecologically and socially important Brazilian watersheds more susceptible to invasion by this plant. Here, I summarize the relevant information about Hydrilla, focusing on its biotic attributes, abiotic tolerance and effects on ecosystems. The aim of this review is to provide background information to assist with planning for the potential impacts of this species in the Neotropical region (particularly in Brazil) and the development of research, monitoring and management strategies. A wide ecological amplitude, resistance organs, and high growth rates and dispersion ability provide Hydrilla with great potential to invade and infest a variety of habitats, often resulting in important physico-chemical and biotic effects on the environment. Hydrilla is similar in its morphological and ecological aspects to Egeria najas and Egeria densa (South American Hydrocharitaceae), but this non-native species is a superior competitor and can be expected to exert significant pressure in habitats colonized by these native Hydrocharitaceae. Socially important rivers (such as the São Francisco River) have a high risk of being infested with Hydrilla, especially in stretches affected by dams, which could prejudice important human activities like hydropower generation. Important wetlands for biodiversity conservation (such as the Pantanal) may also be invaded, but they seem to be more resistant to infestations as long as their natural hydrologies are preserved. Before investing substantial effort to control Hydrilla, managers should weigh the potential costs and benefits of available techniques and consider the potential benefits of Hydrilla in providing ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agostinho, A. A., L. C. Gomes & S. M. Thomaz, 2005. Conservation of the biodiversity of Brazil’s inland waters. Conservation Biology 19: 646–652.

    Google Scholar 

  • Antuniassi, U. R., E. D. Velini & D. Martins, 2002. Remoção mecânica de plantas aquáticas: análise econômica e operacional. Planta Daninha 20: 35–43.

    Google Scholar 

  • Barko, J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biology 10: 229–238.

    CAS  Google Scholar 

  • Barko, J. W. & R. M. Smart, 1981. Comparative influences of light and temperature on the growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51: 219–235.

    Google Scholar 

  • Barko, J. W. & R. M. Smart, 1983. Effects of organic matter additions to sediment on the growth of aquatic plants. Journal of Ecology 71: 161–175.

    CAS  Google Scholar 

  • Barko, J. W. & R. M. Smart, 1986. Sediment relates mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328–1340.

    CAS  Google Scholar 

  • Barko, J. W., R. M. Smart, D. G. McFarland & R. L. Chen, 1988. Interrelationships between the growth of Hydrilla verticillata (L.f.) Royle and sediment nutrient availability. Aquatic Botany 32: 205–216.

    Google Scholar 

  • Barrientos, C. A. & M. S. Allen, 2008. Fish abundance and community composition in native and non-native plants following Hydrilla colonization at Lake Izabal, Guatemala. Fisheries Management and Ecology 15: 99–106.

    Google Scholar 

  • Bayley, S. & C. M. Prather, 2003. Do wetlands lakes exhibit alternative stable states? Submersed aquatic vegetation and chlorophyll in wester boreal shallow lakes. Limnology and Oceanography 48: 2335–2345.

    CAS  Google Scholar 

  • Bianchini, I. Jr., M. B. Cunha-Santino, J. A. M. Milan, C. J. Rodrigues & J. H. P. Dias, 2010. Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia 644: 301–312.

    Google Scholar 

  • Bini, L. M. & S. M. Thomaz, 2005. Prediction of Egeria najas and Egeria densa occurrence in a large subtropical reservoir (Itaipu Reservoir, Brazil-Paraguay). Aquatic Botany 83: 227–238.

    Google Scholar 

  • Blokhina, O., E. Virolainen & K. V. Fagerstedt, 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany 91: 179–194.

    PubMed  CAS  Google Scholar 

  • Bowes, G., T. K. Van, L. A. Garrard & W. T. Haller, 1977. Adaptation to low light levels by Hydrilla. Journal of Aquatic Plant Management 15: 32–35.

    CAS  Google Scholar 

  • Bowes, G., A. S. Holaday & W. T. Haller, 1979. Seasonal variation in the biomass, tuber density, and photosynthetic metabolism of Hydrilla in three Florida lakes. Journal of Aquatic Plant Management 17: 61–65.

    Google Scholar 

  • Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology 35: 11–17.

    CAS  Google Scholar 

  • Brönmark, C., 1989. Interactions between epiphytes, macrophytes and freshwater snails: a review. Journal of Molluscan Studies 55: 299–311.

    Google Scholar 

  • Carr, G. M., H. C. Duthie & W. D. Taylor, 1997. Models of aquatic plant productivity: a review of the factors that influence growth. Aquatic Botany 59: 195–215.

    Google Scholar 

  • Carter, V. & N. Rybicki, 1986. Resurgence of submersed aquatic macrophytes in the tidal Potamic River, Maryland, Virginia, and the District of Columbia. Estuaries 9: 386–375.

    Google Scholar 

  • Carter, V., N. B. Rybicki & C. L. Schulman, 1987. Effect of salinity and temperature on germination of monoecious Hydrilla propagules. Journal of Aquatic Plant Management 25: 54–57.

    Google Scholar 

  • Carter, V., N. B. Rybicki & R. Hammerschlag, 1991. Effects of submersed macrophytes on dissolved-oxygen, pH, and temperature under different conditions of wind, tide, and bed structure. Journal of Freshwater Ecology 6: 121–133.

    CAS  Google Scholar 

  • Carter, V., N. B. Rybicki, J. M. Landwehr & M. Turtora, 1994. Role of weather and water quality in population dynamics of submersed macrophytes in the Tidal Potamic River. Estuaries 17: 417–426.

    Google Scholar 

  • Center, T. D., M. J. Grodowitz, A. F. Cofrancesco, G. Jubinsky, E. Snoddy & J. E. Freeman, 1997. Establishment of Hydrellia pakistanae (Diptera: Ephydridae) for the biological control of the submersed plant Hydrilla verticillata (Hydrocharitaceae) in the southeastern United States. Biological Control 8: 65–73.

    Google Scholar 

  • Chadwell, T. B. & K. A. M. Engelhardt, 2008. Effects of pre-existing submersed vegetation and propagules pressure on the invasion success of Hydrilla verticillata. Journal of Applied Ecology 45: 515–523.

    Google Scholar 

  • Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249–257.

    Google Scholar 

  • Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.

    Google Scholar 

  • Chapman, F. A., S. A. Fitz-Coy, E. M. Thunberg & C. M. Adams, 1997. United States of America trade in ornamental fish. Journal of the World Aquaculture Society 28: 1–10.

    Google Scholar 

  • Chick, J. H. & C. C. McIvor, 1997. Habitat selection by three littoral zone fishes: effects of predation pressure, plant density and macrophyte type. Ecology of Freshwater Fish 6: 27–35.

    Google Scholar 

  • Colon-Gaud, J. C., W. E. Kelso & D. A. Rutherford, 2004. Spatial distribution of macroinvertebrates inhabiting hydrilla and coontais beds in the Atchafalaya Basin, Louisiana. Journal of Aquatic Plant Management 42: 85–91.

    Google Scholar 

  • Cook, C. D. K. & R. Lüönd, 1982. A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany 13: 485–504.

    Google Scholar 

  • Cook, C. D. K. & K. Urmi-König, 1984. A revision of the genus Egeria (Hydrocharitaceae). Aquatic Botany 19: 73–96.

    Google Scholar 

  • Dibble, E. D., S. M. Thomaz & A. A. Padial, 2006. Spatial complexity measured at a multi-scale in three aquatic plant species. Journal of Freshwater Ecology 21: 239–247.

    Google Scholar 

  • Dixit, S. & S. Dhote, 2010. Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environmental Monitoring and Assessment 169: 367–374.

    PubMed  CAS  Google Scholar 

  • Doyle, R. D. & R. M. Smart, 2001. Effects of drawdowns and dessication on tubers of Hydrilla, an exotic aquatic weed. Weed Science 49: 135–140.

    CAS  Google Scholar 

  • Doyle, R. D., M. J. Grodowitz, R. M. Smart & C. Owes, 2002. Impact of herbivory by Hydrellia pakistanae (Diptera: Ephydridae) on growth and photosynthetic of Hydrilla verticillata. Biological Control 24: 221–229.

    Google Scholar 

  • Doyle, R., M. Grodowitz, M. Smart & C. Owes, 2007. Separate and interactive effects of competition and herbivory on the growth, expansion, and tuber formation of Hydrilla verticillata. Biological Control 41: 327–338.

    Google Scholar 

  • Evans, J. M. & A. C. Wilkie, 2010. Life cycle assessment of nutrient remediation and bioenergy production potential from the harvest of hydrilla (Hydrilla verticillata). Journal of Environmental Management 91: 2626–2631.

    PubMed  CAS  Google Scholar 

  • Figuerola, J., A. J. Green & L. Santamaría, 2003. Passive internal transport of aquatic organisms by waterfowl in Doñana, south-west Spain. Global Ecology and Biogeography 12: 427–436.

    Google Scholar 

  • Gaspar da Luz, K. D., R. Fugi, F. Abujanra & A. A. Agostinho, 2002. Alterations in the Pterodoras granulosus (Valenciennes, 1833) (Osteichthyes, Doradidae) diet due to the abundance variation of a bivalve invader species in the Itaipu Reservoir, Brazil. Acta Scientiarum 24: 427–432.

    Google Scholar 

  • Gu, B., 2006. Environmental conditions and phosphorus removal in Florida lakes and wetlands inhabited by Hydrilla verticillata (Royle): implications for invasive species management. Biological Invasions 8: 1569–1578.

    Google Scholar 

  • Gulati, R. G. & E. van Donk, 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia 478: 73–106.

    Google Scholar 

  • Haller, W. T. & D. L. Sutton, 1975. Community structure and competition between Hydrilla and Vallisneria. Journal of Aquatic Plant Management 13: 48–50.

    Google Scholar 

  • Haller, W. T., D. L. Sutton & W. C. Barlowe, 1974. Effects of salinity on growth of several aquatic macrophytes. Ecology 55: 891–894.

    Google Scholar 

  • Harrel, S. L. & E. D. Dibble, 2001. Foraging efficiency of juvenile bluegill (Lepomis macrochirus) among different vegetated habitats. Environmental Biology of Fishes 62: 441–453.

    Google Scholar 

  • Harwell, M. C. & K. E. Havens, 2003. Experimental studies on the recovery potential of submerged aquatic vegetation after flooding and desiccation in a large subtropical lake. Aquatic Botany 77: 135–151.

    Google Scholar 

  • Havens, K. E., 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 493: 173–186.

    Google Scholar 

  • Havens, K. E., B. Sharfstein, M. A. Brady, T. L. East, M. C. Harwell, R. P. Maki & A. J. Rodusky, 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany 78: 67–82.

    Google Scholar 

  • Hershner, C. & K. J. Havens, 2008. Managing invasive aquatic plants in a changing system: strategic consideration of ecosystem services. Conservation Biology 22: 544–550.

    PubMed  Google Scholar 

  • Hofstra, D. E. & J. S. Clayton, 2001. Evaluation of selected herbicide for the control of exotic submerged weeds in New Zealand: I. The use of endothall, triclopyr and dichlobenil. Journal of Aquatic Plant Management 39: 20–24.

    Google Scholar 

  • Hofstra, D. E., J. Clayton, J. D. Green & M. Auger, 1999. Competitive performance of Hydrilla verticillata in New Zealand. Aquatic Botany 63: 305–324.

    Google Scholar 

  • Hofstra, D. E., J. Clayton, J. D. Green & K. D. Adam, 2000. RAPD profiling and isozyme analysis of New Zealand Hydrilla verticillata. Aquatic Botany 66: 153–166.

    CAS  Google Scholar 

  • Hofstra, D., P. Champion & J. Clayton, 2010. Predicting invasive success of Hydrilla verticillata (L.f.) Royle in flowing water. Hydrobiologia 656: 213–219.

    Google Scholar 

  • Holaday, A. S. & G. Bowes, 1980. C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiology 65: 331–335.

    PubMed  CAS  Google Scholar 

  • Hopson, M. S. & P. V. Zimba, 1993. Temporal variation in the biomass of submersed macrophytes in lake Okeechobee, Florida. Journal of Aquatic Plant Management 31: 76–81.

    Google Scholar 

  • Jiang, J., F. Kong, X. Gu, K. Chen, S. Zhao & J. Wang, 2010. Influence of intraspecific interaction and substrate type on initial growth and establishment of Hydrilla verticillata. Hydrobiologia 649: 255–265.

    Google Scholar 

  • Johnson, F. A. & F. Montalbano III, 1984. Selection of plant communities by wintering waterfowl on Lake Okeechobee, Florida. Journal of Wildlife Management 48: 174–178.

    Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Kahara, S. N. & J. E. Vermaat, 2003. The effect of alkalinity on photosynthesis-light curves and inorganic carbon extraction capacity of freshwater macrophytes. Aquatic Botany 75: 217–227.

    CAS  Google Scholar 

  • Kennedy, T. L., L. A. Horth & D. E. Carr, 2009. The effects of nitrate loading on the invasive macrophyte Hydrilla verticillata and two common, native macrophytes in Florida. Aquatic Botany 91: 253–256.

    CAS  Google Scholar 

  • Klosowski, S., 2006. The relationships between environmental factors and the submerged Potametea associations in lakes of north-eastern Poland. Hydrobiologia 560: 15–29.

    CAS  Google Scholar 

  • Langeland, K. A., 1996. Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae), “the perfect aquatic weed”. Castanea 61: 293–304.

    Google Scholar 

  • Lee, D. B., K. B. Lee, C. H. Kim, J. G. Kim & S. Y. Na, 2004. Environmental assessment of water, sediment and plants in the Mankyeong River, ROK. Environmental Geochemistry and Health 26: 135–145.

    PubMed  CAS  Google Scholar 

  • Madeira, P. T., T. K. Van, K. K. Steward & R. J. Schnell, 1997. Random amplified polymorphic DNA analysis of the phenetic relationships among world-wide accessions of Hydrilla verticillata. Aquatic Botany 59: 217–236.

    CAS  Google Scholar 

  • Madeira, P. T., C. C. Jacono & T. K. Van, 2000. Monitoring Hydrilla using two RAPD procedures and the nonindigenous aquatic species database. Journal of Aquatic Plant Management 38: 33–40.

    Google Scholar 

  • Madsen, J. D., 1997. Method for management of nonindigenous aquatic plant. In Luken, J. O. & J. W. Thieret (eds), Assessment and Management of Plant Invasion. Springer, New York: 145–171.

    Google Scholar 

  • Madsen, J. D. & D. H. Smith, 1999. Vegetative spread of dioecious Hydrilla colonies in experimental pounds. Journal of Aquatic Plant Management 37: 25–29.

    Google Scholar 

  • Madsen, J. D. & C. S. Owes, 2000. Factors contributing to the dispersal of Hydrilla in lakes and reservoirs. Aquatic Plant Control Technical Notes Collection (ERDC TN-APCRP-EA-01), U.S. Army Engineer Research and Development Center, Vicksburg, MS.

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Google Scholar 

  • Maki, K. & S. Galatowitsch, 2004. Movement of invasive aquatic plants into Minnesota (USA) through horticultural trade. Biological Conservation 118: 389–396.

    Google Scholar 

  • Marcondes, D. A. S., A. L. Mustafá & R. H. Tanaka, 2003. Estudos para manejo integrado de plantas aquáticas no reservatório de Jupiá. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. Eduem, Maringá: 299–317.

    Google Scholar 

  • Mataraza, L. K., J. B. Terrell, A. B. Munson & D. E. Candfield Jr., 1999. Changes in submersed macrophytes in relation to tidal storm surges. Journal of Aquatic Plant Management 37: 3–12.

    Google Scholar 

  • McFarland, D. G. & J. W. Barko, 1990. Temperature and day length effects on growth and tuber formation in Hydrilla. Journal of Aquatic Plant Management 28: 15–19.

    Google Scholar 

  • McFarland, D. G. & J. W. Barko, 1999. High-temperature effects on growth and propagules formation in Hydrilla biotypes. Journal of Aquatic Plant Management 37: 17–25.

    Google Scholar 

  • Michel, A., R. S. Arias, B. E. Scheffler, S. O. Duke, M. Netherland & F. E. Dayan, 2004. Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Molecular Ecology 13: 3229–3237.

    PubMed  CAS  Google Scholar 

  • Michelan, T. S., S. M. Thomaz, R. P. Mormul & P. Carvalho, 2010. Effects of an exotic invasive macrophyte (tropical signal grass) on native plant community composition, species richness and functional diversity. Freshwater Biology 55: 1315–1316.

    Google Scholar 

  • Monterroso, I., R. Binimelis & B. Rodríguez-Labajos, 2011. New methods for the analysis of invasion processes: multi-criteria evaluation of the invasion of Hydrilla verticillata in Guatemala. Journal of Environmental Management 92: 494–507.

    PubMed  CAS  Google Scholar 

  • Mony, C., T. J. Koschnick, W. T. Haller & S. Muller, 2007. Competition between two invasive Hydrocharitaceae (Hydrilla verticillata (L.f.) and Egeria densa (Planch)) as influenced by sediment fertility and season. Aquatic Botany 86: 236–242.

    Google Scholar 

  • Moore, P. A., K. R. Reddy & D. A. Graetz, 1992. Water quality—nutrient transformations in sediments as influenced by oxygen supply. Journal of Environmental Quality 21: 387–393.

    CAS  Google Scholar 

  • Mormul, R. P., S. M. Thomaz, J. Higuti & K. Martens, 2010. Ostracod (Crustacea) colonization of one native and one non-native macrophyte species of Hydrocharitaceae: an experimental evaluation. Hydrobiologia 644: 185–193.

    Google Scholar 

  • Mullin, B. H., L. W. J. Anderson, J. M. DiTomaso, R. E. Eplee & K. D. Getsinger, 2000. Invasive plant species. Council for Agricultural Science and Technology (CAST) 13: 1–18.

    Google Scholar 

  • Murphy, K. J., 1988. Aquatic weed problems and their management: a review-I. The worldwide scale of the aquatic weed problem. Crop Protection 7: 232–248.

    Google Scholar 

  • Murphy, K. J. & A. H. Pieterse, 1990. Present status and prospects of integrated control of aquatic weeds. In Pieterse, A. H. & K. J. Murphy (eds), The Ecology and Management of Nuisance Aquatic Vegetation. Oxford Publications, New York: 222–227.

    Google Scholar 

  • Nakamura, T. & Y. Kadono, 2000. Genetic diversity of the submerged macrophyte Hydrilla verticillata (L.f.) Royle in a river system in Japan. Limnology 1: 27–31.

    Google Scholar 

  • Nascimento, P. R. F., S. M. B. Pereira & E. V. S. B. Sampaio, 2008. Biomassa de Egeria densa nos reservatórios da hidroelétrica de Paulo Afonso-Bahia. Planta Daninha 26: 481–486.

    Google Scholar 

  • Netherland, M. D., 1997. Turion ecology of Hydrilla. Journal of Aquatic Plant Management 35: 1–10.

    Google Scholar 

  • Oliveira, N. M. B., E. V. S. B. Sampaio, S. M. B. Pereira & A. M. Moura Jr., 2005. Capacidade de regeneração de Egeria densa nos reservatórios de Paulo Afonso, BA. Planta Daninha 23: 363–369.

    Google Scholar 

  • Owens, C. S. & J. D. Madsen, 1998. Phenological studies of carbohydrate allocation in Hydrilla. Journal of Aquatic Plant Management 36: 40–44.

    Google Scholar 

  • Owens, C. S., J. D. Madsen, R. M. Smart & R. M. Stewart, 2001. Dispersal of native and nonnative aquatic plant species in the San Marcos River, Texas. Journal of Aquatic Plant Management 39: 75–79.

    Google Scholar 

  • Pedralli, G., 2003. Macrófitas aquáticas como bioindicadoras da qualidade da água: alternativas para os usos múltiplos de reservatórios. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. EDUEM, Maringá: 171–188.

    Google Scholar 

  • Pelicice, F. M., A. A. Agostinho & S. M. Thomaz, 2005. Fish assemblages associated with Egeria in a tropical reservoir: investigating the effects of plant biomass and dial period. Acta Oecologica 27: 9–16.

    Google Scholar 

  • Pezeshki, S. R., 2001. Wetland plant responses to soil flooding. Environmental and Experimental Botany 46: 299–312.

    Google Scholar 

  • Pierini, S. A. & S. M. Thomaz, 2004. Effects of inorganic carbon source on photosynthetic rates of Egeria najas Planchon and Egeria densa Planchon (Hydrocharitaceae). Aquatic Botany 78: 135–146.

    CAS  Google Scholar 

  • Pieterse, A. H., A. E. H. Ebbers & J. A. C. Verkleij, 1984a. A comparative study on izoenzyme patterns in Hydrilla verticillata (L.f.) Royle from Ireland and North Poland. Aquatic Botany 18: 299–303.

    Google Scholar 

  • Pieterse, A. H., H. P. M. Staphorst & J. A. C. Verkleij, 1984b. Some effects of nitrogen and phosphorus concentration on the phenology of Hydrilla verticillata (L.f.) Royle. Journal of Aquatic Plant Management 22: 62–63.

    Google Scholar 

  • Pieterse, A. H., J. A. C. Verkleij & H. P. M. Staphorst, 1985. A comparative study on isoenzyme patterns, morphology and chromosome number of Hydrilla verticillata (L.f.) Royle in Africa. Journal of Aquatic Plant Management 23: 72–76.

    Google Scholar 

  • Pitelli, R. A., 2007. Plantas exóticas invasoras. In Barbosa, L. M. & N. A. Santos Jr. (eds), A botânica no Brasil. Imprensa Oficial do Estado de São Paulo, São Paulo: 409–412.

    Google Scholar 

  • Poi de Neiff, A. & J. J. Neiff, 2006. Species richness and similarity between invertebrates living on floating plants in the Parana River floodplain. Interciencia 31: 220–225.

    Google Scholar 

  • Poovey, A. G. & S. H. Kay, 1998. The potential of a summer drawdown to manage monoecious Hydrilla. Journal of Aquatic Plant Management 36: 127–130.

    Google Scholar 

  • Posey, M. H., C. Wigand & J. C. Stevenson, 1993. Effects of an introduced aquatic plant, Hydrilla verticillata, on benthic communities in the Upper Chesapeake Bay. Estuarine, Coastal and Shelf Science 37: 539–555.

    Google Scholar 

  • Puri, A., W. T. Haller & M. D. Netherland, 2009. Cross-resistance in fluridone-resistant Hydrilla to other bleaching herbicides. Weed Science 57: 482–488.

    CAS  Google Scholar 

  • Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.

    CAS  Google Scholar 

  • Riis, T. & B. J. F. Biggs, 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography 48: 1488–1497.

    Google Scholar 

  • Roberto, M. C., N. F. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    CAS  Google Scholar 

  • Ryan, F., C. R. Coley & S. H. Kay, 1995. Coexistence of monoecious and dioecious Hydrilla in Lake Gaston, North Carolina and Virginia. Journal of Aquatic Plant Management 33: 8–12.

    Google Scholar 

  • Rybicki, N. B. & J. M. Landwehr, 2007. Long-term changes in abundance and diversity of macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving water quality. Limnology and Oceanography 52: 1195–1207.

    Google Scholar 

  • Rybicki, N. B., D. G. McFarland, H. A. Ruhl, J. T. Reel & J. W. Barko, 2001. Investigations of the availability and survival of submersed aquatic vegetation propagules in the Tidal Potamic River. Estuaries 24: 407–424.

    Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzing, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, M. Walker & D. H. Wall, 2000. Biodiversity—global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    PubMed  CAS  Google Scholar 

  • Salvucci, M. E. & G. Bowes, 1981. The induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiology 67: 333–340.

    Google Scholar 

  • Salvucci, M. E. & G. Bowes, 1983. Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Plant Physiology 73: 488–496.

    PubMed  CAS  Google Scholar 

  • Sand-Jensen, K., 2008. Drag forces on common plant species in temperate streams: consequences of morphology, velocity and biomass. Hydrobiologia 610: 307–319.

    Google Scholar 

  • Santos, A. M. & S. M. Thomaz, 2007. Aquatic macrophytes diversity in lagoons of a tropical floodplain: the role of connectivity and water level. Austral Ecology 32: 177–190.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    PubMed  CAS  Google Scholar 

  • Scremin-Dias, E., V. J. Pott, R. C. Hora & P. R. Souza, 1999. Nos jardins submersos da Bodoquena: guia para identificação de plantas aquáticas de Bonito e região. Ed. UFMS, Campo Grande.

    Google Scholar 

  • Shabana, Y. M., J. P. Cuda & R. Charudattan, 2003. Evaluation of pathogens as potential biocontrol agents of Hydrilla. Journal of Phytopathology 151: 607–613.

    Google Scholar 

  • Silveira, M. J., S. M. Thomaz, R. P. Mormul & F. P. Camacho, 2009. Effects of desiccation and sediment type on early regeneration of plant fragments of three species of aquatic macrophytes. International Review of Hydrobiology 94: 169–178.

    CAS  Google Scholar 

  • Sioli, H., 1984. The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin. Dr. W. Junk Pub Co, Dordrecht, Netherlands.

    Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz, K. J. Murphy, M. J. Silveira & R. P. Mormul, 2009. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch, in a sub-tropical river floodplain: the Upper River Paraná, Brazil. Hydrobiologia 632: 65–78.

    Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2010. Response of native Egeria najas Planch and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92: 40–48.

    Google Scholar 

  • Spencer, D. F. & G. G. Ksander, 2001. Field evaluation of degree-day based equations for predicting sprouting of Hydrilla (Hydrilla verticillata) turions and tubers. Journal of Freshwater Ecology 16: 479–486.

    Google Scholar 

  • Spencer, W. E., J. Teeri & R. G. Wetzel, 1994. Acclimation of photosynthetic phenotype to environmental heterogeneity. Ecology 75: 301–314.

    Google Scholar 

  • Spencer, W. E., R. G. Wetzel & J. Teeri, 1996. Photosynthetic phenotype plasticity and the role of phosphoenolpyruvate carboxylase in Hydrilla verticillata. Plant Science 118: 1–9.

    CAS  Google Scholar 

  • Srivastava, S., K. C. Bhainsa & S. F. D’Souza, 2010a. Investigation of uranium accumulation potential and biochemical responses of an aquatic weed Hydrilla verticillata (L.f.) Royle. Bioresource Technology 101: 2573–2579.

    PubMed  CAS  Google Scholar 

  • Srivastava, S., S. Mishra, S. Dwivedi & R. D. Tripathi, 2010b. Role of thiol metabolism in arsenic detoxification in Hydrilla verticilata (L.f.) Royle. Water Air and Soil Pollution 212: 155–165.

    CAS  Google Scholar 

  • Steward, K. K., 1991. Growth of various Hydrilla races in waters of differing pH. Florida Scientist 54: 117–125.

    Google Scholar 

  • Steward, K. K., 1993. Seed production in monoecious and dioecious populations of Hydrilla. Aquatic Botany 46: 169–183.

    Google Scholar 

  • Sutton, D. L., T. K. Van & K. M. Portier, 1992. Growth of dioecious and monoecious Hydrilla from single tubers. Journal of Aquatic Plant Management 30: 15–20.

    Google Scholar 

  • Theel, H. J., E. D. Dibble & J. D. Madsen, 2008. Differential influence of a monotypic and diverse native aquatic plant bed on a macroinvertebrate assemblage; an experimental implication of exotic plant induced habitat. Hydrobiologia 600: 77–87.

    Google Scholar 

  • Thomaz, S. M., 2002. Fatores ecológicos associados à colonização e ao desenvolvimento de macrófitas aquáticas e desafios de manejo. Planta Daninha 20: 21–33.

    Google Scholar 

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini & K. J. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.

    Google Scholar 

  • Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Thomaz, S. M., P. Carvalho, R. P. Mormul, F. A. Ferreira, M. J. Silveira & T. S. Michelan, 2009a. Temporal trends and effects of diversity on occurrence of exotic macrophyte in a large reservoir. Acta Oecologica 35: 614–620.

    Google Scholar 

  • Thomaz, S. M., P. Carvalho, A. A. Padial & J. T. Kobayashi, 2009b. Temporal and spatial patterns of aquatic macrophyte diversity in the Upper Paraná River floodplain. Brazilian Journal of Biology 69: 617–625.

    CAS  Google Scholar 

  • Van, T. K., 1989. Differential responses to photoperiods in monoecious and dioecious Hydrilla verticillata. Weed Science 37: 552–556.

    Google Scholar 

  • Van, T. K. & K. K. Steward, 1990. Longevity of monoecious Hydrilla propagules. Journal of Aquatic Plant Management 28: 74–76.

    Google Scholar 

  • Van, T. K., W. T. Haller & G. Bowes, 1976. Comparison of the photosynthetic characteristics of three submersed aquatic plants. Plant Physiology 58: 761–768.

    PubMed  CAS  Google Scholar 

  • Van, T. K., G. S. Wheeler & T. D. Center, 1999. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquatic Botany 62: 225–233.

    Google Scholar 

  • Van Dijk, G. M., D. D. Thayer & W. T. Haller, 1986. Growth of Hygrophila and Hydrilla in flowing water. Journal of Aquatic Plant Management 24: 85–87.

    Google Scholar 

  • Verkleij, J. A. C., A. H. Pieterse, G. J. T. Horneman & M. Torenbeek, 1983. A comparative study of the morphology and isoenzyme patterns of Hydrilla verticillata (L.f.) Royle. Aquatic Botany 17: 43–59.

    CAS  Google Scholar 

  • Vieira, L. C. G., L. M. Bini, L. F. M. Velho & G. R. Mazão, 2007. Influence of spatial complexity on the density of periphytic rotifers, microcrustaceans and testate amoebae. Fundamental and Applied Limnology 170: 77–85.

    Google Scholar 

  • Wade, P. M., 1990. Physical control of aquatic weeds. In Pieterse, A. H. & K. J. Murphy (eds), Aquatic Weeds: The Ecology and Management of Nuisance Aquatic Vegetation. Oxford Science Publications, New York: 93–135.

    Google Scholar 

  • Wang, S., X. Jin, H. Zhao, X. Zhou & F. Wu, 2007. Effects of Hydrilla verticillata on phosphorus retention and release in sediments. Water, Air, and Soil Pollution 181: 329–339.

    CAS  Google Scholar 

  • Wang, J., D. Yu, W. Xiong & Y. Han, 2008a. Above- and belowground competition between two submersed macrophytes. Hydrobiologia 607: 113–122.

    Google Scholar 

  • Wang, S., X. Jin, H. Zhao & F. Wu, 2008b. Phosphate biosorption characteristics of a submerged macrophyte Hydrilla verticillata. Aquatic Botany 89: 23–26.

    CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  • White, A., J. B. Reiskind & G. Bowes, 1996. Dissolved inorganic carbon influences the photosynthetic responses of Hydrilla to photoinhibitory conditions. Aquatic Botany 53: 3–13.

    CAS  Google Scholar 

  • Wigand, C., J. C. Stevenson & J. C. Cornwell, 1997. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany 56: 233–244.

    CAS  Google Scholar 

  • Wu, J., S. Cheng, W. Liang & Z. Wu, 2009. Effects of organic-rich sediment and below-ground sulfide exposure on submerged macrophyte, Hydrilla verticillata. Bulletin of Environmental Contamination and Toxicology 83: 497–501.

    PubMed  CAS  Google Scholar 

  • Xue, P., G. Li, W. Liu & C. Yan, 2010. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere 81: 1098–1103.

    PubMed  CAS  Google Scholar 

  • Ye, C., H. Yu, H. Kong, X. Song, G. Zou, Q. Xu & J. Liu, 2009. Community collocation of four submerged macrophytes on two kinds of sediments in Lake Taihu, China. Ecological Engineering 35: 1656–1663.

    Google Scholar 

  • Yeo, R. R., R. H. Falk & J. R. Thurston, 1984. The morphology of Hydrilla (Hydrilla verticillata (L.f.) Royle). Journal of Aquatic Plant Management 22: 1–17.

    Google Scholar 

  • Yu, H., C. Ye, X. Song & J. Liu, 2010. Comparative analysis of growth and physio-biochemical responses of Hydrilla verticillata to different sediments in freshwater microcosms. Ecological Engineering 36: 1285–1289.

    Google Scholar 

Download references

Acknowledgments

I am thankful to Dr. Sidinei M. Thomaz, Dr. David Dudgeon, Dr. David Strayer and the anonymous reviewer for the review and suggestions made to improve the manuscript and to Dr. William Severi for the data kindly provided on the limnological features of reservoirs of the São Francisco River. I am also thankful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for research financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Z. Sousa.

Additional information

Handling editor: David Dudgeon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, W.T.Z. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669, 1–20 (2011). https://doi.org/10.1007/s10750-011-0696-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0696-2

Keywords

Navigation