Skip to main content

Advertisement

Log in

The specific inherent optical properties of three sub-tropical and tropical water reservoirs in Queensland, Australia

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The underwater light climate, which is a major influence on the ecology of aquatic systems, is affected by the absorption and scattering processes that take place within the water column. Knowledge of the specific inherent optical properties (SIOPs) of water quality parameters and their spatial variation is essential for the modelling of underwater light fields and remote sensing applications. We measured the SIOPs and water quality parameter concentrations of three large inland water impoundments in Queensland, Australia. The measurements ranged from 0.9 to 42.7 μg l−1 for chlorophyll a concentration, 0.9–170.4 mg l−1 for tripton concentration, 0.36–1.59 m−1 for a CDOM(440) and 0.15–2.5 m for Secchi depth. The SIOP measurements showed that there is sufficient intra-impoundment variation in the specific absorption and specific scattering of phytoplankton and tripton to require a well distributed network of measurement stations to fully characterise the SIOPs of the optical water quality parameters. While significantly different SIOP sets were measured for each of the study sites the measurements were consistent with published values in other inland waters. The multiple measurement stations were allocated into optical domains as a necessary step to parameterise a semi-analytical inversion remote sensing algorithm. This article also addresses the paucity of published global inland water SIOP sets by contributing Australian SIOP sets to allow international and national comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aas, E., J. Høkedal & K. Sørensen, 2005. Spectral backscattering coefficient in coastal waters. International Journal of Remote Sensing 26: 331–343.

    Article  Google Scholar 

  • Ahn, Y. H., A. Bricaud & A. Morel, 1992. Light backscattering efficiency and related properties of some phytoplankters. Deep-Sea Research 39: 1835–1855.

    Article  Google Scholar 

  • Bainbridge, Z., J. Brodie, S. Lewis, I. Duncan, D. Post, J. Faithful & M. Furnas, 2006a. Event-based water quality monitoring in the Burdekin Dry Tropics Region: 2004/05 wet season. ACTFR Report No. 06/01 for the Burdekin Dry Tropics NRM. Australian Centre for Tropical Freshwater Research, James Cook University, Townsville: 83.

  • Bainbridge, Z., S. Lewis, J. Brodie, J. Faithful, M. Maughan, D. Post, P. O’Reagain, R. Bartley, S. Ross, B. Schaffelke, T. McShane & L. Baynes, 2006b. Monitoring of sediments and nutrients in the Burdekin Dry Tropics Region: 2005/06 wet season. ACTFR Report No. 06/13 for the Burdekin Dry Tropics NRM. Centre for Tropical Freshwater Research, James Cook University, Townsville: 97.

  • Belzile, C., W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai & C. S. Roesler, 2004. Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resources Research 40: W12512.

    Article  Google Scholar 

  • Binding, C. E., J. H. Jerome, R. P. Bukata & W. G. Booty, 2008. Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sensing of Environment 112: 1702–1711.

    Article  Google Scholar 

  • Boss, E., R. Collier, G. Larson, K. Fennel & W. Pegau, 2007. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR. Hydrobiologia 574: 149–159.

    Article  CAS  Google Scholar 

  • Bricaud, A., M. Babin, A. Morel & H. Claustre, 1995. Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton: analysis and parameterization. Journal of Geophysical Research: Oceans 100: 13321–13332.

    Article  Google Scholar 

  • Bricaud, A., H. Claustre, J. Ras & K. Oubelkheir, 2004. Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations. Journal of Geophysical Research: Oceans 109: C11010.

    Article  Google Scholar 

  • Buiteveld, H., 1995. A model for calculation of diffuse light attenuation (PAR) and Secchi depth. Aquatic Ecology 29: 55–65.

    Article  CAS  Google Scholar 

  • Burford, M. A. & M. J. O’Donohue, 2006. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology 51: 973–982.

    Article  CAS  Google Scholar 

  • Campbell, G. & S. R. Phinn, 2009. Accuracy and precisions of water quality parameters retrieved from particle swarm optimisation in a sub-tropical lake. In Bostater, C. R., Jr., S. P. Mertikas, X. Neyt & M. Velez-Reyes (eds), Proceedings SPIE Vol. 7473, Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2009. Berlin, Germany, 31 August 2009. doi:10.1117/12.829737.

  • Campbell, G. & S. R. Phinn, 2010. An assessment of the accuracy and precision of water quality parameters retrieved with the Matrix Inversion Method. Limnology and Oceanography Methods 8: 16–29.

    Article  Google Scholar 

  • Carder, K. L., R. G. Steward, G. R. Harvey & P. B. Ortner, 1989. Marine humic and fulvic-acids: their effects on remote-sensing of ocean chlorophyll. Limnology and Oceanography 34: 68–81.

    Article  CAS  Google Scholar 

  • Clementson, L. A., J. S. Parslow, A. R. Turnbull, D. C. McKenzie & C. E. Rathbone, 2001. Optical properties of waters in the Australasian sector of the Southern Ocean. Journal of Geophysical Research: Oceans 106: 31611–31625.

    Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Commonwealth Bureau of Meteorology, 2009. Climate statistics for Australian locations [available on internet at http://www.bom.gov.au/climate/averages/tables/cw_040189.shtml, accessed 9 Oct 2009].

  • Dall’Olmo, G. & A. A. Gitelson, 2005. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Applied Optics 44: 412–422.

    Article  PubMed  Google Scholar 

  • Dana, D. R. & R. A. Maffione, 2002. Determining the backward scattering coefficient with fixed-angle backscattering sensors—revisited. In Proceedings of the Ocean Optics XVI Conference, 18–22 November 2002, Santa Fe, NM, USA.

  • Davies-Colley, R. J. & W. N. Vant, 1987. Absorption of light by yellow substance in freshwater lakes. Limnology and Oceanography 32: 416–425.

    Article  CAS  Google Scholar 

  • Davies-Colley, R. J., R. D. Pridmore & J. E. Hewitt, 1986. Optical properties of some freshwater phytoplanktonic algae. Hydrobiologia 133: 165–178.

    Article  Google Scholar 

  • Dekker, A. G., T. J. M. Malthus, M. M. Wijnen & E. Seyhan, 1992. The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters. Remote Sensing of Environment 41: 211–225.

    Article  Google Scholar 

  • Dekker, A. G., R. J. Vos & S. W. M. Peters, 2002. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. International Journal of Remote Sensing 23: 15–35.

    Article  Google Scholar 

  • Dekker, A. G., V. E. Brando, K. Oubelkheir, M. Wettle, L. A. Clementson, S. Peters, R. Pasterkamp & H. van der Woerd, 2004. When freshwater meets ocean water: how variable SIOPs affect remote sensing products of estuaries, bays and coastal seas. In Proceedings of the Ocean Optics XVII Conference, 25–29 October 2004, Fremantle, Australia.

  • Douglas, G., M. Palmer, G. Caitcheon & P. Orr, 2007. Identification of sediment sources to Lake Wivenhoe, South-East Queensland, Australia. Marine & Freshwater Research 58: 793–810.

    Article  CAS  Google Scholar 

  • Erm, A., H. Arst, P. Nõges, A. Reinart & L. Sipelgas, 2002. Temporal variations in bio-optical properties of four North Estonian lakes in 1999–2000. Geophysica 38: 89–111.

    Google Scholar 

  • Hakvoort, H., J. F. de Haan, R. R. W. Jordans, R. J. Vos, S. W. M. Peters & M. Rijkeboer, 2002. Towards airborne remote sensing of water quality in The Netherlands—validation and error analysis. ISPRS Journal of Photogrammetry and Remote Sensing 57: 171–183.

    Article  Google Scholar 

  • Hayase, K. & H. Tsubota, 1985. Sedimentary humic acid and fulvic acid as fluorescent organic materials. Geochimica et Cosmochimica Acta 49: 159–163.

    Article  CAS  Google Scholar 

  • Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber & K. Mopper, 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53: 955–969.

    Article  Google Scholar 

  • Herlevi, A., 2002a. Inherent and apparent optical properties in relation to water quality in Nordic waters. Ph.D. Thesis, Division of Geophysics, University of Helsinki.

  • Herlevi, A., 2002b. A study of scattering, backscattering and a hyperspectral reflectance model for boreal waters. Geophysica 38: 113–132.

    Google Scholar 

  • Hoepffner, N. & S. Sathyendranath, 1991. Effect of pigment composition on absorption properties of phytoplankton. Marine Ecology Progress Series 73: 11–23.

    Article  CAS  Google Scholar 

  • Ibelings, B. W., L. R. Mur & A. E. Walsby, 1991. Diurnal changes in buoyancy and vertical-distribution in populations of Microcystis in 2 shallow lakes. Journal of Plankton Research 13: 419–436.

    Article  Google Scholar 

  • Joo, M., B. Yu, B. Fentie & C. Caroll, 2005. Estimation of long-term sediment loads in the Fitzroy catchment, Queensland, Australia. In Zerger, A. & R. M. Argent (eds), MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand: 1161–1167.

  • Jupp, D. L. B., J. T. O. Kirk & G. P. Harris, 1994. Detection, identification and mapping of cyanobacteria-using remote sensing to measure the optical quality of turbid inland waters. Australian Journal of Marine and Freshwater Research 45: 801–828.

    Article  Google Scholar 

  • Kallio, K., J. Pulliainen & P. Ylöstalo, 2005. MERIS, MODIS and ETM+ channel configurations in the estimation of lake water quality from subsurface reflectance using semianalytical and empirical algorithms. Geophysica 41: 31–55.

    Google Scholar 

  • Kirk, J. T. O., 1986. Optical limnology—a manifesto. In Williams, W. D. & P. De Deckker (eds), Limnology in Australia. CSIRO, Dordrecht.

    Google Scholar 

  • Kirk, J. T. O., 1992. Monte Carlo modeling of the performance of a reflective tube absorption meter. Applied Optics 31: 6463–6468.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge: 509 pp.

  • Kishino, M., M. Takahashi, N. Okami & S. Ichimura, 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bulletin of Marine Science 37: 634–642.

    Google Scholar 

  • Kosten, S., F. Roland, D. Marques, E. H. Van Nes, N. Mazzeo, L. D. L. Sternberg, M. Scheffer & J. J. Cole, 2010. Climate-dependent CO2 emissions from lakes. Global Biogeochemical Cycles 24: GB2007.

  • Kutser, T., 2004. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnology and Oceanography 49: 2179–2189.

    Article  Google Scholar 

  • Kutser, T., A. Herlevi, K. Kallio & H. Arst, 2001. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes. The Science of the Total Environment 268: 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Kutser, T., L. Metsamaa, N. Strömbeck & E. Vahtmäe, 2006. Monitoring cyanobacterial blooms by satellite remote sensing. Estuarine, Coastal and Shelf Science 67: 303–312.

    Article  Google Scholar 

  • Le, C., Y. Li, Y. Zha & D. Sun, 2009. Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China. Hydrobiologia 619: 27–37.

    Article  CAS  Google Scholar 

  • Lohrenz, S. E., A. D. Weidemann & M. Tuel, 2003. Phytoplankton spectral absorption as influenced by community size structure and pigment composition. Journal of Plankton Research 25: 35–61.

    Article  CAS  Google Scholar 

  • Loiselle, S. A., L. Bracchini, A. Cozar, A. M. Dattilo, A. Tognazzi & C. Rossi, 2009. Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes. Journal of Photochemistry and Photobiology B, Biology 95: 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Ma, R. H., J. Tang, J. Dai, Y. Zhang & Q. Song, 2006. Absorption and scattering properties of water body in Taihu Lake, China: absorption. International Journal of Remote Sensing 27: 4277–4304.

    Article  Google Scholar 

  • Ma, R. H., D. L. Pan, H. T. Duan & Q. J. Song, 2009. Absorption and scattering properties of water body in Taihu Lake, China: backscattering. International Journal of Remote Sensing 30: 2321–2335.

    Article  Google Scholar 

  • Maffione, R. A. & D. R. Dana, 1997. Instruments and methods for measuring the backward-scattering coefficient of ocean waters. Applied Optics 36: 6057–6067.

    Article  CAS  PubMed  Google Scholar 

  • Metsamaa, L., T. Kutser & N. Strombeck, 2006. Recognising cyanobacterial blooms based on their optical signature: a modelling study. Boreal Environment Research 11: 493–506.

    CAS  Google Scholar 

  • Minor, E. & B. Stephens, 2008. Dissolved organic matter characteristics within the Lake Superior watershed. Organic Geochemistry 39: 1489–1501.

    Article  CAS  Google Scholar 

  • Mitchell, B. G., 1990. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. In Spinrad, R. W. (ed), Proceedings SPIE Vol. 1302, Ocean Optics X. Orlando, FL, USA, 16 April 1990. doi:10.1117/12.21440.

  • Mitrovic, S. M., L. C. Bowling & R. T. Buckney, 2001. Vertical disentrainment of Anabaena circinalis in the turbid, freshwater Darling River, Australia: quantifying potential benefits from buoyancy. Journal of Plankton Research 23: 47–55.

    Article  Google Scholar 

  • Morel, A. & L. Prieur, 1977. Analysis of variations in ocean color. Limnology and Oceanography 22: 709–722.

    Article  Google Scholar 

  • Morris, D. P. & B. R. Hargreaves, 1997. The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnology and Oceanography 42: 239–249.

    Article  CAS  Google Scholar 

  • Mueller, J. L., G. S. Fargion, C. R. McClain, S. Pegau, J. R. V. Zaneveld, B. G. Mitchell, M. Kahru, J. Wieland & M. Stramska, 2003. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols. NASA, Greenbelt, MD.

    Google Scholar 

  • O’Reagain, P. J., J. Brodie, G. Fraser, J. J. Bushell, C. H. Holloway, J. W. Faithful & D. Haynes, 2005. Nutrient loss and water quality under extensive grazing in the upper Burdekin river catchment, North Queensland. Marine Pollution Bulletin 51: 37–50.

    Article  PubMed  Google Scholar 

  • Ohi, N., H. Saito & S. Taguchi, 2005. Diel patterns in chlorophyll a specific absorption coefficient and absorption efficiency factor of picoplankton. Journal of Oceanography 61: 379–388.

    Article  CAS  Google Scholar 

  • Okullo, W., T. Ssenyonga, B. Hamre, Ø. Frette, K. Sørensen, J. J. Stamnes, A. Steigen & K. Stamnes, 2007. Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria. Applied Optics 46: 8553–8561.

    Article  CAS  PubMed  Google Scholar 

  • Oubelkheir, K., L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke & P. Daniel, 2006. Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system. Journal of Geophysical Research: Oceans 111: C07021.

    Article  Google Scholar 

  • Paavel, B., H. Arst & A. Herlevi, 2007. Dependence of spectral distribution of inherent optical properties of lake waters on the concentrations of different water constituents. Nordic Hydrology 38: 265–285.

    Article  Google Scholar 

  • Pegau, W. S. & J. R. V. Zaneveld, 1993. Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum. Limnology and Oceanography 38: 188–192.

    Article  CAS  Google Scholar 

  • Pegau, W. S., D. Gray & J. R. V. Zaneveld, 1997. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Applied Optics 36: 6035–6046.

    Article  CAS  PubMed  Google Scholar 

  • Petzold, T. J., 1972. Volume Scattering Functions for Selected Ocean Waters. Scripps Institution of Oceanography, San Diego.

    Google Scholar 

  • Pierson, D. C. & N. Strömbeck, 2001. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model. The Science of the Total Environment 268: 171–188.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, L. L., 1996. Remote sensing of algal bloom dynamics. BioScience 46: 492–501.

    Article  Google Scholar 

  • Rijkeboer, M., A. G. Dekker & H. J. Gons, 1997. Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology. Aquatic Ecology 31: 313–323.

    Article  Google Scholar 

  • Risovic, D., 1993. Two-component model of sea particle size distribution. Deep Sea Research Part I: Oceanographic Research Papers 40: 1459–1473.

    Article  Google Scholar 

  • Sathyendranath, S., L. Lazzara & L. Prieur, 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnology and Oceanography 32: 403–415.

    Article  CAS  Google Scholar 

  • South East Queensland Water Corporation Ltd, 2005. Key features of dams and storages [available online at http://www.seqwater.com.au/files/pdf/KeyDamStatistics.pdf, accessed 25 May 2006].

  • Strömbeck, N. & D. C. Pierson, 2001. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters. The Science of the Total Environment 268: 123–137.

    Article  PubMed  Google Scholar 

  • Sunwater, 2005. Sunwater 04-05 annual report [available online at http://www.sunwater.com.au/pdf/about/SunWater_Annual_Report.pdf, accessed 25 May 2006].

  • Tilstone, G. H., G. F. Moore, K. Sorensen, R. Doerffer, R. Rottgers, K. G. Ruddick, R. Pasterkamp & P. V. Jorgensen, 2002, REVAMP protocols document. European Space Agency: 77 pp.

  • Twardowski, M. S., E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard & J. R. V. Zaneveld, 2001. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. Journal of Geophysical Research: Oceans 106: 14129–14142.

    Article  CAS  Google Scholar 

  • Ulloa, O., S. Sathyendranath & T. Platt, 1994. Effect of the particle-size distribution on the backscattering ratio in seawater. Applied Optics 33: 7070–7077.

    Article  CAS  PubMed  Google Scholar 

  • Vaillancourt, R. D., C. W. Brown, R. R. L. Guillard & W. M. Balch, 2004. Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy. Journal of Plankton Research 26: 191–212.

    Article  CAS  Google Scholar 

  • Van Heukelem, L. & C. S. Thomas, 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A 910: 31–49.

    Article  PubMed  Google Scholar 

  • Vidussi, F., H. Claustre, B. B. Manca, A. Luchetta & J. C. Marty, 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. Journal of Geophysical Research: Oceans 106: 19939–19956.

    Article  Google Scholar 

  • Vos, R. J., J. H. M. Hakvoort, R. R. W. Jordans & B. W. Ibelings, 2003. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. The Science of the Total Environment 312: 221–243.

    Article  CAS  PubMed  Google Scholar 

  • WET Labs Inc, 2005. ac-9 Protocol Document (Revision J). Western Environmental Technology Laboratories (WETLabs), Philomath, OR: 41.

  • Wettle, M. & V. E. Brando, 2006. SAMBUCA semi-analytical model for bathymetry, un-mixing, and concentration assessment. CSIRO Land and Water Science Report. CSIRO Land and Water, Canberra: 27.

  • Whitlock, C. H., L. R. Poole, J. W. Usry, W. M. Houghton, W. G. Witte, W. D. Morris & E. A. Gurganus, 1981. Comparison of reflectance with backscatter and absorption parameters for turbid waters. Applied Optics 20: 517–522.

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld, J. R. V., J. C. Kitchen & C. Moore, 1994. The scattering error correction of reflecting-tube absorption meters. In Jaffe, J. S. (ed), Proceedings SPIE Vol. 2258, Ocean Optics XII. Bergen, Norway, 13 June 1994. doi:10.1117/12.190095.

  • Zhang, Y. L., B. Zhang, X. Wang, J. S. Li, S. Feng, Q. H. Zhao, M. L. Liu & B. Q. Qin, 2007. A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China. Hydrobiologia 592: 105–120.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., M. L. Liu, X. Wang, G. W. Zhu & W. M. Chen, 2009. Bio-optical properties and estimation of the optically active substances in Lake Tianmuhu in summer. International Journal of Remote Sensing 30: 2837–2857.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms Lesley Clementson of CSIRO for the laboratory measurements and Dr. Arnold Dekker and Dr. Vittorio Brando for their valuable comments on the final manuscript. The authors would like to express our gratitude to the water body operators, SEQWater and Sunwater, for their assistance in the field operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Campbell.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, G., Phinn, S.R. & Daniel, P. The specific inherent optical properties of three sub-tropical and tropical water reservoirs in Queensland, Australia. Hydrobiologia 658, 233–252 (2011). https://doi.org/10.1007/s10750-010-0476-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0476-4

Keywords

Navigation