Skip to main content

Advertisement

Log in

Organic matter availability during pre- and post-drought periods in a Mediterranean stream

  • GLOBAL CHANGE AND RIVER ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mediterranean streams are characterized by water flow changes caused by floods and droughts. When intermittency occurs in river ecosystems, hydrologic connectivity is interrupted and this affects benthic, hyporheic and flowing water compartments. Organic matter use and transport can be particularly affected during the transition from wet to dry and dry to wet conditions. In order to characterize the changes in benthic organic matter quantity and quality throughout a drying and rewetting process, organic matter, and enzyme activities were analyzed in the benthic accumulated material (biofilms growing on rocks and cobbles, leaves, and sand) and in flowing water (dissolved and particulate fractions). The total polysaccharide, amino acid, and lipid content in the benthic organic matter were on average higher in the drying period than in the rewetting period. However, during the drying period, peptide availability decreased, as indicated by decreases in leucine aminopeptidase activity, as well as amino acid content in the water and benthic material, except leaves; while polysaccharides were actively used, as indicated by an increase in β-glucosidase activity in the benthic substrata and an increase in polysaccharide content of the particulate water fraction and in leaf material. During this process, microbial heterotrophs were constrained to use the organic matter source of the lowest quality (polysaccharides, providing only C), since peptides (providing N and C) were no longer available. During the flow recovery phase, the microbial community rapidly recovered, suggesting the use of refuges and/or adaptation to desiccation during the previous drought period. The scouring during rewetting was responsible for the mobilization of the streambed and loss of benthic material, and the increase in high quality organic matter in transport (at that moment, polysaccharides and amino acids accounted for 30% of the total DOC). The dynamics of progressive and gradual drought effects, as well as the fast recovery after rewetting, might be affected by the interaction of the individual dynamics of each benthic substratum: sand sediments and leaves providing refuge for microorganisms and organic matter storage, while on cobbles, an active bacterial community is developed in the rewetting. Since global climate change may favor a higher intensity and frequency of droughts in streams, understanding the effects of these disturbances on the materials and biota could contribute to reliable resource management. The maintenance of benthic substrata heterogeneity within the stream may be important for stream recovery after droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.

    Article  Google Scholar 

  • Acuña, V., A. Giorgi, I. Munoz, F. Sabater & S. Sabater, 2007. Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. Journal of the North American Benthological Society 26: 54–69.

    Article  Google Scholar 

  • Amalfitano, S., S. Fazi, A. M. Zoppini, A. B. Caracciolo, P. Grenni & A. Puddu, 2008. Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers. Microbial Ecology 55: 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Arnell, R., B. Bates, H. Land, J. J. Magnusson & P. Mulholland, 1996. Hydrology and freshwater ecology. In Watson, R. T., M. C. Zinyowera, R. H. Moss & D. J. Dokken (eds), Climate Change 1995: Impacts, Adaptations, and Mitigation. Scientific-Technical Analysis. Cambridge University Press, Cambridge, UK: 325–364.

    Google Scholar 

  • Artigas, J., A. M. Romani & S. Sabater, 2008. Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundamental and Applied Limnology 173: 255–264.

    Article  CAS  Google Scholar 

  • Baldwin, D. S. & A. M. Mitchell, 2000. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regulated Rivers: Research and Management 16: 457–467.

    Article  Google Scholar 

  • Billi, D. & M. Potts, 2002. Life and death of dried prokaryotes. Research in Microbiology 153: 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Bligh, E. G. & W. J. Dyer, 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37: 911–917.

    CAS  PubMed  Google Scholar 

  • Bond, N. R., P. S. Lake & A. H. Arthington, 2008. The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600: 3–16.

    Article  Google Scholar 

  • Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.

    Article  Google Scholar 

  • Boulton, A. J. & P. S. Lake, 1992. Benthic organic matter and detritivorous macroinvertebrates in two intermittent streams in south-east Australia. Hydrobiologia 241: 107–118.

    Article  CAS  Google Scholar 

  • Burford, M. A., A. J. Cook, C. S. Fellows, S. R. Balcombe & S. E. Bunn, 2008. Sources of carbon fuelling production in an arid floodplain river. Marine and Freshwater Research 59: 224–234.

    Article  CAS  Google Scholar 

  • Butturini, A., S. Bernal, E. Nin, C. Hellin, L. Rivero, S. Sabater & F. Sabater, 2003. Influences of the stream groundwater hydrology on nitrate concentration in unsaturated riparian area bounded by an intermittent Mediterranean stream. Water Resources Research 39: 1–13.

    Article  Google Scholar 

  • Butturini, A., M. Alvarez, S. Bernal, E. Vazquez & F. Sabater, 2008. Diversity and temporal sequences of forms of DOC and NO3-discharge responses in an intermittent stream: predictable or random succession? Journal of Geophysical Research-Biogeosciences 113. G03016. doi: 10.1029/2008JG000721.

  • Caramujo, M. J., C. R. B. Mendes, P. Cartaxana, V. Brotas & M. J. Boavida, 2008. Influence of drought on algal biofilms and meiofaunal assemblages of temperate reservoirs and rivers. Hydrobiologia 598: 77–94.

    Article  CAS  Google Scholar 

  • Chanudet, V. & M. Filella, 2006. The application of the MBTH method for carbohydrate determination in freshwaters revisited. International Journal of Environmental and Analytical Chemistry 86: 693–712.

    Article  CAS  Google Scholar 

  • Claret, C. & A. J. Boulton, 2003. Diel variation in surface and subsurface microbial activity along a gradient of drying in an Australian sand-bed stream. Freshwater Biology 48: 1739–1755.

    Article  CAS  Google Scholar 

  • Cuffney, T. F. & J. B. Wallace, 1989. Discharge-export relationships in headwater streams: the influence of invertebrate manipulations and drought. Journal of the North American Benthological Society 8: 331–341.

    Article  Google Scholar 

  • Cummins, K. W., 1974. Structure and function of stream ecosystems. Bioscience 24: 631–641.

    Article  Google Scholar 

  • Dahm, C. N., M. A. Baker, D. I. Moore & J. R. Thibault, 2003. Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshwater Biology 48: 1219–1231.

    Article  CAS  Google Scholar 

  • Fisher, S. G. & N. B. Grimm, 1991. Streams and disturbances: are cross-ecosystem comparisons useful? In Cole, J. C., G. M. Lovett & S. E. G. Findlay (eds), Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories. Springer-Verlag, New York: 196–221.

    Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire – integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.

    Article  Google Scholar 

  • Francis, C. & F. Sheldon, 2002. River Red Gum (Eucalyptus camaldulensis Dehnh.) organic matter as a carbon source in the lower Darling River, Australia. Hydrobiologia 481: 113–124.

    Article  CAS  Google Scholar 

  • Freese, H. M., U. Karsten & R. Schumannn, 2006. Bacterial abundance, activity, and viability in the eutrophic river Warnow, Northeast Germany. Microbial Ecology 51: 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: Abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Article  Google Scholar 

  • Hach Company, 1992. Hach Water Analysis Handbook, 2nd ed. Hach Company, Loveland, CO.

    Google Scholar 

  • Harvey, H. R. & A. Mannino, 2001. The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers. Organic Geochemistry 32: 527–542.

    Article  CAS  Google Scholar 

  • Howitt, J. A., D. S. Baldwin, G. N. Rees & B. T. Hart, 2008. Photodegradation, interaction with iron oxides and bioavailability of dissolved organic matter from forested floodplain sources. Marine and Freshwater Research 59: 780–791.

    Article  CAS  Google Scholar 

  • Humphries, P. & D. S. Baldwin, 2003. Drought and aquatic ecosystems: an introduction. Freshwater Biology 48: 1141–1146.

    Article  Google Scholar 

  • Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher-plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Keeney, D. R. & D. W. Nelson, 1982. Nitrogen – inorganic forms. In Page, A. L., R. H. Miller & D. R. Keeney (eds), Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA: 643–698.

    Google Scholar 

  • Lake, P. S., 2000. Disturbances, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Article  Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Article  Google Scholar 

  • Langhans, S. D. & K. Tockner, 2006. The role of timing, duration, and frequency of inundation in controlling leaf-litter decomposition in a river-floodplain ecosystem (Tagliamento, NE Italy). Oecologia 147: 501–509.

    Article  PubMed  Google Scholar 

  • Lehner, B., P. Döll, J. Alcamo, T. Henrichs & F. Kaspar, 2006. Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Climatic Change 75: 273–299.

    Article  Google Scholar 

  • Mariotti, A., M. V. Struglia, N. Zeng & K. M. Lau, 2002. The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. Journal of Climate 15: 1674–1690.

    Article  Google Scholar 

  • McClain, M. E., J. E. Richey & T. P. Pimentel, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6: 301–312.

    Article  CAS  Google Scholar 

  • Moran, M. A. & R. G. Zepp, 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnology and Oceanography 42: 1307–1316.

    Article  CAS  Google Scholar 

  • Pakulski, J. D. & R. Benner, 1992. An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Marine Chemistry 40: 143–160.

    Article  CAS  Google Scholar 

  • Peterson, C. G., H. M. Valett & C. N. Dahm, 2001. Shifts in habitat templates for lotic microalgae linked to interannual variation in snowmelt intensity. Limnology and Oceanography 46: 858–870.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime: a paradigm for river conservation and restoration. Bioscience 47: 769–784.

    Article  Google Scholar 

  • Robson, B. J., 2000. Role of residual biofilm in the recolonization of rocky intermittent streams by benthic algae. Marine and Freshwater Research 51: 724–732.

    Article  Google Scholar 

  • Romaní, A. M. & S. Sabater, 1997. Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream. Archiv Für Hydrobiologie 140: 261–271.

    Google Scholar 

  • Romaní, A. M. & S. Sabater, 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology 82: 3232–3245.

    Google Scholar 

  • Romaní, A. M., E. Vázquez & A. Butturini, 2006. Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface. Microbial Ecology 52: 501–512.

    Article  PubMed  Google Scholar 

  • Sabater, S. & K. Tockner, 2010. Effects of hydrologic alterations on the ecological quality of river ecosystems. In Sabater, S. & D. Barceló (eds), Water Scarcity in the Mediterranean. Handbook Environmental Chemistry. Springer Verlag. doi:10.1007/698_2009_24.

  • Sabater, S., S. Bernal, A. Butturini, E. Nin & F. Sabater, 2001. Wood and leaf debris input in a Mediterranean stream: the influence of riparian vegetation. Archiv Für Hydrobiologie 153: 91–102.

    Google Scholar 

  • Schröter, D., W. Cramer & R. Leemans, 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310: 1333–1337.

    Article  PubMed  Google Scholar 

  • Servais, P., A. Anzil & C. Ventresque, 1989. Simple method for determination of biodegradable dissolved organic-carbon in water. Applied and Environmental Microbiology 55: 2732–2734.

    CAS  PubMed  Google Scholar 

  • Stanley, E. H., S. G. Fisher & J. B. J. Jones, 2004. Effects of water loss on primary production: a landscape-scale model. Aquatic Sciences 66: 130–138.

    Article  Google Scholar 

  • Stepanauskas, R., H. Laudon & N. O. G. Jorgensen, 2000. High DON bioavailability in boreal streams during a spring flood. Limnology and Oceanography 45: 1298–1307.

    Article  CAS  Google Scholar 

  • Thurman, E. M., 1985. Organic Geochemistry of Natural Waters. Nijhoff, M & Junk, W Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Usher, H. D. & D. W. Blinn, 1990. Influence of various exposure periods on the biomass and chlorophyll a content of Cladophora glomerata (Chlorophyta). Journal of Phycology 26: 244–249.

    Article  Google Scholar 

  • Vázquez, E., A. M. Romani, F. Sabater & A. Butturini, 2007. Effects of the dry-wet hydrological shift on dissolved organic carbon dynamics and fate across stream-riparian interface in a Mediterranean catchment. Ecosystems 10: 239–251.

    Article  Google Scholar 

  • Wetzel, R. G., P. G. Hatcher & T. S. Bianchi, 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnology and Oceanography 40: 1369–1380.

    Article  CAS  Google Scholar 

  • Wright, J. F. & K. L. Symes, 1999. A nine-year study of the macroinvertebrate fauna of a chalk stream. Hydrological Processes 13: 387–399.

    Article  Google Scholar 

  • Ylla, I., A. M. Romaní & S. Sabater, 2007. Differential effects of nutrients and light on the primary production of stream algae and mosses. Fundamental and Applied Limnology 170: 1–10.

    Article  CAS  Google Scholar 

  • Zollner, N. & K. Kirsch, 1962. Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekanntem Plasmalipoiden) gemeinsamen Sulphophosphovanillin-Reaktion. Zeitsehrift ffir die gesamte experimentelle Medizin 135: 545–561.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by projects CGL2007-65549/BOS and CGL2008-05618-C02/BOS of the Spanish Ministry of Science and Innovation and SCARCE (Consolider-Ingenio CSD2009-00065). Andrea Butturini participation was funded by GCL200760144. We thank Francesco Ricciardi for his help with the amino acid analysis, Aitor Larrañaga for his help with the lipid protocol, and Patricia Rodrigo for her help with the lipid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Ylla.

Additional information

Guest editors: R. J. Stevenson & S. Sabater / Global Change and River Ecosystems–Implications for Structure, Function and Ecosystem Services

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ylla, I., Sanpera-Calbet, I., Vázquez, E. et al. Organic matter availability during pre- and post-drought periods in a Mediterranean stream. Hydrobiologia 657, 217–232 (2010). https://doi.org/10.1007/s10750-010-0193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0193-z

Keywords

Navigation