Skip to main content
Log in

Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia

  • SALT LAKE RESEARCH
  • Published:
Hydrobiologia Aims and scope Submit manuscript

An Erratum to this article was published on 09 July 2009

Abstract

Subterranean or groundwater estuaries occur in porous and cavernous substrates where groundwater abuts the ocean. Like surface estuaries, they are strongly stratified, temporally and hydrochemically heterogeneous environments that support complex hydrogeochemical and biological processes and ecological communities. Here, we contend that groundwater estuaries also occur where groundwater flow approaches salt lakes and provide evidence in the context of groundwater (valley or phreatic) calcretes in palaeovalleys of the arid western plateau of Australia. The calcrete groundwater estuaries display marked and complex physico-chemical gradients along, across and through the groundwater flow path. From the first principles and the density differences between water bodies, we may expect the form and dynamics of the saltwater front to mimic that of marine estuaries but with the dynamic and temporal response to changing hydrology heavily dampened, and driven by the episodic groundwater recharge and lake filling typical of arid regions. The calcrete aquifers support diverse biological communities of obligate groundwater animals, largely endemic to a given calcrete body. These communities comprise both macro and microinvertebrates, predominantly a suite of crustacean higher taxa, and a great diversity of diving beetles (Dytiscidae) isolated in the calcrete aquifers between ca. 5 and 8 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allford, A., S. J. B. Cooper, W. F. Humphreys & A. D. Austin, 2008. The ecology and distribution of groundwater fauna in a limestone aquifer: does sampling alter the story? Invertebrate Systematics 22: 127–138.

    Google Scholar 

  • Arakel, A. V., 1986. Evolution of calcrete in palaeodrainages of the Lake Napperby area, Central Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 54: 283–303.

    CAS  Google Scholar 

  • Ash, C., B. Hanson & C. Norman, 2002. Earth, air, fire, and water. Science 296: 1055.

    CAS  Google Scholar 

  • Balke, M., C. H. S. Watts, S. J. B. Cooper, W. F. Humphreys & A. P. Vogler, 2004. A highly modified stygobitic diving beetle of the genus Copelatus (Coleoptera, Dytiscidae): taxonomy and cladistic analysis based on mtDNA sequences. Systematic Entomology 29: 59–67.

    Google Scholar 

  • Barnett, J. C. & D. P. Commander, 1985. Hydrogeology of the Western Fortescue Valley, Pilbara Region, Western Australia. Geological Survey Record 1986/8. Western Australia Geological Survey, Perth.

    Google Scholar 

  • Bayly, I. A. E., 1967. The general biological classification of aquatic environments with special reference to those of Australia. In Weatherley, A. H. (ed.), Australian Inland Waters and Their Fauna: Eleven Studies. ANU Press, Canberra: 78–104.

    Google Scholar 

  • Bayly, I. A. E. & P. Ellis, 1969. Haloniscus searlei Chilton: an aquatic “terrestrial” isopod with remarkable powers of osmotic regulation. Comparative Biochemistry and Physiology 31: 523–528.

    Google Scholar 

  • Boulton, A. J., 2000. River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosystem Health 6: 108–118.

    Google Scholar 

  • Boulton, A. J., G. D. Fenwick, P. J. Hancock & M. S. Harvey, 2008. Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics 22: 103–116.

    Google Scholar 

  • Bowler, J. M., 1981. Australian salt lakes a palaeohydrologic approach. Hydrobiologia 82: 431–444.

    Google Scholar 

  • Bradbury, J. H., 1999. The systematics and distribution of Australian freshwater amphipods: a review. In Schram, F. R. & J. C. von Vaupel Klein (eds), Crustaceans and the Biodiversity Crisis. Proceedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands, July 20–24, 1998. Brill, Leiden: 533–540.

  • Bradbury, J. H. & W. D. Williams, 1997. Amphipod (Crustacea) diversity in underground waters in Australia: an Aladdin’s Cave. Memoirs of Museum Victoria 56: 513–519.

    Google Scholar 

  • Byrne, M., D. K. Yeates, M. Kearney, J. Bowler, M. A. Williams, S. J. B. Cooper, S. C. Donnellan, S. Keogh, R. Leijs, J. Melville, D. Murphy, N. Porch & K.-H. Wyrwoll, 2008. Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17: 4398–4417.

    PubMed  CAS  Google Scholar 

  • Carlisle, D., 1980. Possible variations on the calcrete-gypcrete uranium model. Report Prepared for the United States Department of Energy Under Subcontract Number 76-022-E between Bendix Field Engineering Corporation and The Regents of the University of California.

  • Castanier, S., G. Le Métayer-Levrel & J. P. Perthuisot, 1999. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sedimentary Geology 126: 9–23.

    CAS  Google Scholar 

  • Castanier, S., G. Le Métayer-Levrel & J. P. Perthuisot, 2000. Bacterial roles in the precipitation of carbonate minerals. In Riding, R. E. & S. M. Awramik (eds), Microbial Sediments. Springer Verlag, NY, USA: 32–39.

    Google Scholar 

  • Charette, M., 2001. Submarine groundwater discharge creates “Iron Curtain”. Woodshole Oceanographic Institute, Annual Report 2001: 23–24.

  • Charette, M. A. & E. R. Sholkovitz, 2002. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophysical Research Letters 29(10), doi:10.1029/2001GLO14512.

  • Cho, J.-L., 2005. A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn Craton of Western Australia. Journal of Natural History 39: 3423–3433.

    Google Scholar 

  • Cho, J.-L., J.-G. Park & W. F. Humphreys, 2005. A new genus and six new species of the Parabathynellidae (Bathynellacea, Syncarida) from the Kimberley Region, Western Australia. Journal of Natural History 39: 2225–2255.

    Google Scholar 

  • Cho, J.-L., W. F. Humphreys & S.-D. Lee, 2006a. Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia. Invertebrate Systematics 20: 9–41.

    Google Scholar 

  • Cho, J.-L., J.-G. Park & Y. Ranga Reddy, 2006b. Brevisomabathynella gen. nov. with two new species from Western Australia (Bathynellacea, Syncarida): the first definitive evidence of predation in Parabathynellidae. Zootaxa 1247: 25–42.

    Google Scholar 

  • Chow, V. T. (ed.), 1964. Handbook of Applied Hydrology: A Compendium of Water-Resources Technology. McGraw-Hill, New York.

  • Cooper, S. J. B., S. Hinze, R. Leys, C. H. S. Watts & W. F. Humphreys, 2002. Islands under the desert: molecular systematics and evolutionary origins of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics 16: 589–598.

    Google Scholar 

  • Cooper, S. J. B., J. H. Bradbury, K. M. Saint, R. Leys, A. D. Austin & W. F. Humphreys, 2007. Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16: 1533–1544.

    PubMed  CAS  Google Scholar 

  • Cooper, S. J. B., K. M. Saint, S. Taiti, A. D. Austin & W. F. Humphreys, 2008. Subterranean archipelago II: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22: 195–206.

    Google Scholar 

  • Dames & Moore, 1984. Millstream water management programme. Unpublished report. Public Works Department, Western Australia. ISBN: 0 7244 9536 3.

  • Danielopol, D. L., 1989. Groundwater fauna associated with riverine aquifers. Journal of the North American Benthological Society 8: 18–35.

    Google Scholar 

  • De Deckker, P., 1983. Australian salt lakes: their history, chemistry and biota—a review. Hydrobiologia 105: 231–244.

    Google Scholar 

  • De Laurentiis, P., G. L. Pesce & W. F. Humphreys, 1999. Copepods from ground waters of Western Australia, IV. Cyclopids from basin and craton aquifers (Crustacea: Copepoda: Cyclopidae). Records of the Western Australian Museum 19: 243–257.

    Google Scholar 

  • De Laurentiis, P., G. L. Pesce & W. F. Humphreys, 2001. Copepods from ground waters of Western Australia, VI. Cyclopidae (Crustacea: Copepoda) from the Yilgarn Region and the Swan Coastal Plain. Records of the Western Australian Museum Supplement 64: 115–131.

    Google Scholar 

  • De Los Rios, P. & J. E. Crespo, 2004. Salinity effects on the abundance of Boeckella poopoensis (Copepoda, Calanoida) in saline ponds in the Atacama Desert, northern Chile. Crustaceana 77: 417–423.

    Google Scholar 

  • Eberhard, S. M., S. A. Halse & W. F. Humphreys, 2005. Stygofauna in the Pilbara region, north-west Western Australia: a systematic review. Journal of the Royal Society of Western Australia 88: 167–176.

    Google Scholar 

  • English, P., N. A. Spooner, J. Chappell, D. G. Questiaux & N. G. Hill, 2001. Lake Lewis basin, central Australia: environmental evolution and OSL chronology. Quaternary International 83–85: 81–101.

    Google Scholar 

  • Eugster, H. P. & B. F. Jones, 1979. Behaviour of major solutes during closed-basin brine evolution. American Journal of Science 279: 609–631.

    Google Scholar 

  • Fenwick, G. D., H. R. Thorpe & P. A. White, 2004. Groundwater systems. In Harding, J., P. Mosely, C. Pearson & B. Sorrell (eds), Freshwaters of New Zealand. New Zealand Hydrological Society and New Zealand Limnological Society: Christchurch, New Zealand 29: 1–18.

  • Finston, T. L., J. H. Bradbury, M. S. Johnson & B. Knott, 2004. When morphology and molecular markers conflict: a case history of subterranean amphipods from the Pilbara, Western Australia. Animal Biodiversity and Conservation 27: 83–94.

    Google Scholar 

  • Finston, T. L., M. S. Johnson, W. F. Humphreys, S. Eberhard & S. Halse, 2007. Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16: 355–365.

    PubMed  CAS  Google Scholar 

  • Geological Survey, 1989. Hydrogeological Map of Western Australia, 1:2,500,000. Geological Survey of Western Australia, Perth.

    Google Scholar 

  • Gibert, J. & L. Deharveng, 2002. Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52: 473–481.

    Google Scholar 

  • Gray, D. J., 2001. Hydrogeochemistry in the Yilgarn Craton. Geochemistry: Exploration, Environment, Analysis 1: 253–264.

    CAS  Google Scholar 

  • Guzik, M. T., S. J. B. Cooper, W. F. Humphreys, J.-L. Cho & A. Austin, 2008. Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics 22: 205–216.

    Google Scholar 

  • Haack, S. K. & B. A. Bekins, 2000. Microbial populations in contaminated plumes. Hydrogeology Journal 8: 63–76.

    Google Scholar 

  • Hammer, U. T., 1984. The saline lakes of Canada. In Taub, F. B. (ed.), Ecosystems of the World: 23. Lakes and Reservoirs. Elsevier, Amsterdam: 521–540.

    Google Scholar 

  • Hancock, P. J., A. J. Boulton & W. F. Humphreys, 2005. Aquifers and hyporheic zones: towards an ecological understanding of groundwater. The Future of Hydrogeology. Hydrogeology Journal 13: 98–111.

    CAS  Google Scholar 

  • Hardie, L. A. & H. P. Eugster, 1970. The evolution of closed basin brines. Mineralogical Society of America Special Publication 3: 273–290.

    Google Scholar 

  • Hatton, T., 2001. Land use and catchment water balance. CSIRO Land and Water Technical Report 18/01, Perth.

  • Hesse, P. P., J. W. Magee & S. van der Kaars, 2004. Late Quaternary climates of the Australian arid zone: a review. Quaternary International 118–119: 87–102.

    Google Scholar 

  • Hocking, R. M., H. T. Moors & W. J. E. van de Graaff, 1987. Geology of the Carnarvon Basin, Western Australia. Geological Survey of Western Australia, Bulletin 133: 1–289.

    Google Scholar 

  • Humphreys, W. F., 1999a. Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. Journal of the Royal Society of Western Australia 82: 89–98.

    Google Scholar 

  • Humphreys, W. F., 1999b. Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In Ponder, W. & D. Lunney (eds), The Other 99%. The Conservation and Biodiversity of Invertebrates. Transactions of the Royal Zoological Society of New South Wales, Mosman 2088: 219–227.

  • Humphreys, W. F., 2000a. Karst wetlands biodiversity and continuity through major climatic change—an example from arid tropical Western Australia. In Gopal, B., W. J. Junk & J. A. Davis (eds), Biodiversity in Wetlands: Assessment, Function and Conservation, Vol. 1. Backhuys Publishers, Leiden: 227–258.

    Google Scholar 

  • Humphreys, W. F., 2000b. First in, last out: should aquifer ecosystems be at the vanguard of remediation assessment? In Johnston, C. D. (ed.), Contaminated Site Remediation: From Source Zones to Ecosystems, Vol. 1. Centre for Groundwater Studies, Wembley, Western Australia: 275–282.

    Google Scholar 

  • Humphreys, W. F., 2001. Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum, Supplement 64: 63–83.

    Google Scholar 

  • Humphreys, W. F., 2002. Keynote address: groundwater ecosystems in Australia: an emerging understanding. In Proceedings of the International Association of Hydrogeologists Conference, Darwin, Australia, 12–17 May 2002. CD-ROM from steven.tickell@nt.gov.au.

  • Humphreys, W. F., 2006. Aquifers: the ultimate groundwater dependent ecosystems. In Eamus, D. (ed.) Special Edition on Groundwater Dependent Ecosystems. Australian Journal of Botany 54: 115–132.

  • Humphreys, W. F., 2008a. Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22: 85–101.

    Google Scholar 

  • Humphreys, W. F., 2008b. Hydrogeology and groundwater ecology: does each inform the other? Hydrogeology Journal. doi:10.1007/s10040-008-0349-3.

  • Humphreys, W. F., S. M. Awramik & M. H. P. Jebb, 1995. Freshwater biogenic tufa dams in Madang Province, Papua New Guinea. Journal of the Royal Society of Western Australia 78: 43–54.

    Google Scholar 

  • Iliffe, T. M., 2000. Anchialine cave ecology. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World: 30. Subterranean Ecosystems. Elsevier, Amsterdam: 59–76.

    Google Scholar 

  • Jacobson, G. & A. V. Arakel, 1986. Calcrete aquifers in the Australian arid zone. In Proceedings of the International Conference on Groundwater Systems Under Stress, Brisbane, Australian Water Resources Council: 515–523.

  • Jacobson, G. & J. Wischusen, 2001. Groundwater for Aboriginal communities in central Australia: the Western Water Study (Wiluraratja Kapi), Northern Territory. In Gostin, V. A. (ed.), Gondwana to Greenhouse: Australian Environmental Geoscience. Geological Society of Australia Special Publication 21: 171–178.

  • Jaume, D., G. A. Boxshall & W. F. Humphreys, 2001. New stygobiont copepods (Calanoida; Misophrioida) from Bundera sinkhole, an anchialine cenote on north-western Australia. Zoological Journal of the Linnean Society London 133: 1–24.

    Google Scholar 

  • Karanovic, I., 2003. Towards a revision of Candoninae (Crustacea: Ostracoda): descriptions of two new genera from Australian groundwaters. Species Diversity 8: 353–383.

    Google Scholar 

  • Karanovic, T., 2004. Subterranean copepods (Crustacea: Copepoda) from arid Western Australia. Crustaceana Supplement 3: 1–366.

    Google Scholar 

  • Karanovic, I., 2005. Towards a revision of Candoninae (Crustacea, Ostracoda): Australian representatives of the subfamily, with description of three new genera and seven new species. New Zealand Journal of Marine and Freshwater Research 39: 29–75.

    Article  Google Scholar 

  • Karanovic, T., 2006. Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Records of the Western Australian Museum Supplement 70: 1–239.

    Google Scholar 

  • Karanovic, I., 2007. Candoninae ostracodes from the Pilbara region in Western Australia. Crustaceana Monographs 7: 1–432.

    Google Scholar 

  • Karanovic, I. & P. Marmonier, 2002. On the genus Candonopsis (Crustacea: Ostracoda: Candoninae) in Australia, with a key to the world recent species. Annals of Limnology 38: 199–240.

    Article  Google Scholar 

  • Karanovic, I. & P. Marmonier, 2003. Three new genera and nine new species of the subfamily Candoninae (Crustacea, Ostracoda, Podocopida) from the Pilbara region (Western Australia). Beaufortia 53: 1–51.

    Google Scholar 

  • Kiefer, F., 1967. Cyclopiden aus salzhaltigen Binnengewassern australiens (Copepoda). Crustaceana 12: 292–302.

    Google Scholar 

  • Langecker, T. G., 2000. The effects of continuous darkness on cave ecology and cavernicolous evolution. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World, Vol. 30. Amsterdam, Elsevier: 581–601.

    Google Scholar 

  • Lawrence, J. R., R. C. Hynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulfur bacteria to total primary production in a meromictic saline lake. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 201–207.

    Google Scholar 

  • Leys, R. & C. H. Watts, 2008. Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics 22: 217–225.

    Google Scholar 

  • Leys, R., C. H. S. Watts, S. J. B. Cooper & W. F. Humphreys, 2003. Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57: 2819–2834.

    PubMed  Google Scholar 

  • Lyons, W. B., S. W. Tyler & H. E. Gaudette, 1995. The use of strontium isotopes in determining the groundwater mixing and brine salt-fingering in a playa discharge zone, Lake Tyrrell, Australia. Journal of Hydrology 167: 225–239.

    CAS  Google Scholar 

  • Mann, A. W. & R. L. Deutscher, 1978. Hydrogeochemistry of a calcrete-containing aquifer near Lake Way, Western Australia. Journal of Hydrology 38: 357–377.

    CAS  Google Scholar 

  • Mann, A. W. & R. C. Horwitz, 1979. Groundwater calcrete deposits in Australia: some observations from Western Australia. Journal of the Geological Society of Australia 26: 293–303.

    CAS  Google Scholar 

  • McArthur, J. M., J. Turner, W. B. Lyons & M. F. Thirlwall, 1989. Salt sources and water–rock interactions on the Yilgarn Block, Australia: isotopic and major element tracers. Applied Geochemistry 4: 79–92.

    CAS  Google Scholar 

  • Michael, H. A., A. E. Mulligan & C. F. Harvey, 2005. Seasonal oscillations in water exchange between aquifers and coastal ocean. Nature 436: 1145–1148.

    PubMed  CAS  Google Scholar 

  • Moore, H. B., 1966. Marine Ecology. Wiley, New York.

    Google Scholar 

  • Moore, W. S., 1999. The subterranean estuary: a reaction zone of ground water and sea water. Marine Chemistry 65: 111–125.

    CAS  Google Scholar 

  • Morgan, K. H., 1993. Development, sedimentation and economic potential of palaeoriver systems of the Yilgarn Craton of Western Australia. Sedimentary Geology 85: 637–656.

    Google Scholar 

  • Page, T. J., W. F. Humphreys & J. M. Hughes, 2008. Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS ONE 3(2): e1618. doi:10.1371/journal.pone.0001618.

    PubMed  Google Scholar 

  • Pesce, G. L., P. De Laurentiis & W. F. Humphreys, 1996. Copepods from ground waters of Australia, II. The genus Halicyclops (Crustacea: Copepoda: Cyclopidae). Records of the Western Australian Museum 18: 77–85.

    Google Scholar 

  • Pérez del Villar, L., A. Garralón, A. Delgado, E. Reyes, J. S. Cózar, P. Gómez, R. Núñez, L. Sánchez & J. Raya, 2004. Hydrogeochemical evolution and C isotope study of groundwaters from “Mina Fe” U deposit (Salamanca, Spain): implications for processes in radwaste disposal. Applied Geochemistry 20: 465–485.

    Google Scholar 

  • Pinder, A. M. & R. O. Brinkhurst, 1997. Review of the Phreodrilidae (Annelida: Oligochaeta: Tubificida) of Australia. Invertebrate Taxonomy 11: 443–523.

    Google Scholar 

  • Pinder, A. M., E. M. Eberhard & W. F. Humphreys, 2006. New phallodrilines (Annelida: Clitellata: Tubificidae) from Western Australian groundwater. Zootaxa 1304: 31–48.

    Google Scholar 

  • Pohlman, J. W., L. A. Cifuentes & T. M. Iliffe, 2000. Food web dynamics and biogeochemistry of anchialine caves: a stable isotope approach. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World: 30. Subterranean Ecosystems. Elsevier, Amsterdam: 345–357.

    Google Scholar 

  • Pohlman, J. W., T. M. Iliffe & L. A. Cifuentes, 1997. A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Marine Ecology Progress Series 155: 17–27.

    CAS  Google Scholar 

  • Poore, G. C. B. & W. F. Humphreys, 1998. First record of Spelaeogriphacea from Australasia: a new genus and species from an aquifer in the arid Pilbara of Western Australia. Crustaceana 71: 721–742.

    Google Scholar 

  • Poore, G. C. B. & W. F. Humphreys, 2003. Second species of Mangkurtu (Spelaeogriphacea) from north-western Australia. Records of the Western Australian Museum 22: 67–74.

    Google Scholar 

  • Pora, E. A., 1969. L’importance du facteur rhopique (équilibre ionique) pour la vie aquatique. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 17: 970–986.

    Google Scholar 

  • Radke, L., 2000. Solute divides and chemical facies in south-eastern Australian salt lakes and the response of ostracods in time (Holocene) and space. Ph.D. thesis, Australian National University, Canberra.

  • Radke, L., S. Juggins, S. A. Halse, P. De Deckker & T. Finston, 2003. Chemical diversity in south-eastern Australian saline lakes II: biotic implications. Marine and Freshwater Research 54: 895–912.

    CAS  Google Scholar 

  • Reeves, J. M., P. De Deckker & S. A. Halse, 2007. Groundwater ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585: 99–118.

    CAS  Google Scholar 

  • Sanders, C. C., 1974. Calcrete in Western Australia. Western Australia Geological Survey Annual Report 1973: 12–14.

  • Schminke, H. K., 1973. Evolution, System und Verbreitungsgeschichte der Familie Parabathynellidae (Bathynellacea, Malacostraca). Mikrofauna des Meeresbodens 24: 1–192.

    Google Scholar 

  • Schminke, H. K., 1974. Mesozoic intercontinental relationships as evidenced by bathynellid crustacea (Syncarida: Malacostraca). Systematic Zoology 23: 157–164.

    Google Scholar 

  • Schminke, H. K., 1981. Adaptation of Bathynellacea (Crustacea, Syncarida) to life in the interstitial (“Zoea Theory”). Internationale Revue gesamten Hydrobiologie 66: 575–637.

    Google Scholar 

  • Seymour, J. R., W. F. Humphreys & J. G. Mitchell, 2007. Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Microbial Ecology 50: 11–24.

    Google Scholar 

  • Simon, K. S., 2000. Organic dynamics and trophic structure in karst groundwater. Ph.D. thesis. Faculty of Biology, Virginia Polytechnic Institute and State University.

  • Simon, K. S., E. F. Benfield & S. A. Macko, 2003. Food web structure and the role of epilithic biofilms in cave streams. Ecology 84: 2395–2406.

    Google Scholar 

  • Sket, B., 1996. The ecology of anchihaline caves. Trends in Ecology and Evolution 11: 221–255.

    Google Scholar 

  • Stock, J. H., T. M. Iliffe & D. Williams, 1986. The concept ‘anchialine’ reconsidered. Stygologia 2: 90–92.

    Google Scholar 

  • Taiti, S. & W. F. Humphreys, 2001. New aquatic Oniscidea (Crustacea, Isopoda) from groundwater calcretes of Western Australia. In Humphreys, W. F. & M. S. Harvey (eds), Subterranean Biology in Australia 2000. Records of the Western Australian Museum, Supplement No. 64: 133–151.

  • Testa, J. M., M. A. Charette, E. R. Sholkovitz, M. C. Allen, A. Rago & C. W. Herbold, 2002. Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts. Biological Bulletin 203: 255–256.

    PubMed  Google Scholar 

  • Tokuoka, T., Y. Sampei, K. Nishimura, S. Suzaki, S. Matsuda, S. Kubota, S. Suzuki, H. Ueno & T. Ikeda, 2000. Saline water intrusion at estuary river and its relation to the underground water: a case study at R. Gonokawa, Shimane Pref., Japan. Proceedings of the Techno Ocean Symposium 3: 715–720.

    Google Scholar 

  • Torgersen, T., 1984. Wind effects on water and salt loss in playa lakes. Journal of Hydrology 74: 137–149.

    CAS  Google Scholar 

  • Torgersen, T., P. De Deckker, A. R. Chivas & J. M. Bowler, 1986. Salt lakes: a discussion of processes influencing palaeoenvironmental interpretation and recommendations for future study. Palaeogeography, Palaeoclimatology, Palaeoecology 54: 7–19.

    Google Scholar 

  • Vasconcelos, P. M., K. M. Knesel, B. E. Cohen & J. A. Heim, 2008. Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation. Australian Journal of Earth Sciences 55(6): 865–914.

    CAS  Google Scholar 

  • Wanty, R. B., & R. Schoen, 1991. A review of the chemical processes affecting the mobility of radionuclides in natural waters, with applications. In Gundersen, L. C. S. & R. B. Wanty (eds), Field Studies of Radon in Rocks, Soils, and Water. US Geological Survey Bulletin 1971: 183–194.

  • Watts, C. H. S. & W. F. Humphreys, 1999. Three new genera and five new species of Dytiscidae (Coleoptera) from underground waters in Australia. Records of the South Australian Museum 32: 121–142.

    Google Scholar 

  • Watts, C. H. S. & W. F. Humphreys, 2000. Six new species of Nirridessus and Tjirtudessus (Dytiscidae; Coleoptera) from underground waters in Australia. Records of the South Australian Museum 33: 127–144.

    Google Scholar 

  • Watts, C. H. S. & W. F. Humphreys, 2001. A new genus and six new species of Dytiscidae (Coleoptera) from underground waters in the Yilgarn palaeodrainage system of Western Australia. Records of the South Australian Museum 34: 99–114.

    Google Scholar 

  • Watts, C. H. S. & W. F. Humphreys, 2003. Twenty-five new Dytiscidae (Coleoptera) of the genera Tjirtudessus Watts & Humphreys, Nirripirti Watts & Humphreys and Bidessodes Regimbart, from underground waters in Australia. Records of the South Australian Museum 36: 135–187.

    Google Scholar 

  • Watts, C. H. S. & W. F. Humphreys, 2004. Thirteen new Dytiscidae (Coleoptera) of the genera Boongurrus Larson, Tjirtudessus Watts & Humphreys and Nirripirti Watts and Humphreys, from underground waters in Australia. Transactions of the Royal Society of South Australia 128: 99–129.

    Google Scholar 

  • Watts, C. H. S. & W. F. Humphreys, 2006. Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts and Humphreys, from underground waters in Australia. Transactions of the Royal Society of South Australia 130: 123–185.

    Google Scholar 

  • Watts, C. H. S. & W. F. Humphreys, in press. Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp and Exocelina Broun, from underground waters in Australia. Transactions of the Royal Society of South Australia 133.

  • Williams, W. D., 1983. On the ecology of Haloniscus searlei (Isopoda, Oniscoidea), an inhabitant of Australian salt lakes. Hydrobiologia 105: 137–142.

    Google Scholar 

  • Williams, W. D., 1984. Australian lakes. In Taub, F. B. (ed.), Ecosystems of the World: 20. Lakes and Reservoirs. Elsevier, Amsterdam: 499–519.

    Google Scholar 

  • Williams, W. D., 1986. Limnology, the study of inland waters: a comment on perceptions of studies of salt lakes, past and present. In De Deckker, P. & W. D. Williams (eds), Limnology in Australia. CSIRO Melbourne & Dr W. Junk Publishers, Dordrecht: 471–484.

    Google Scholar 

  • Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.

    CAS  Google Scholar 

  • Wilson, G. D. F., 2001. Australian groundwater-dependent isopod crustaceans. In Humphreys, W. F. & M. S. Harvey (eds), Subterranean Biology in Australia 2000. Records of the Western Australian Museum, Supplement No. 64: 239–240.

  • Wilson, G. D. F., 2003. A new genus of Tainisopidae fam. nov. (Crustacea: Isopoda) from the Pilbara, Western Australia. Zootaxa 245: 1–20.

    Google Scholar 

  • Wilson, G. D. F. & R. T. Johnson, 1999. Ancient endemism among freshwater isopods (Crustacea, Phreatoicidea). In Ponder, W. & D. Lunney (eds), The Other 99%. The Conservation and Biodiversity of Invertebrates. Transactions of the Royal Zoological Society of New South Wales, Mosman: 264–268.

    Google Scholar 

  • Wolff, W. J., 1973. The estuary as a habitat: an analysis of data on the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt. Zoologische Verhandelingen 126: 1–242.

    Google Scholar 

Download references

Acknowledgements

We thank Stefano Taiti and Joo-Lae Cho for their determinations and continued involvement in the calcrete studies, Jessica Reeves for processing ionic data, and Andy Austin and the Environmental Futures Network working group on short-range endemic taxa associated with troglobitic and groundwater ecosystems for support and valuable discussion. Elements of this work were supported by grants from the Australian Biological Resources Study and the Australian Research Council (A00106441). We thank Brian Timms and an anonymous referee, whose discerning comments served to improve the lucidity of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. F. Humphreys.

Additional information

Guest Editors: J. John & B. Timms

Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research

An erratum to this article can be found at http://dx.doi.org/10.1007/s10750-009-9864-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, W.F., Watts, C.H.S., Cooper, S.J.B. et al. Groundwater estuaries of salt lakes: buried pools of endemic biodiversity on the western plateau, Australia. Hydrobiologia 626, 79–95 (2009). https://doi.org/10.1007/s10750-009-9738-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9738-4

Keywords

Navigation