Skip to main content

Advertisement

Log in

Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems

  • GLOBAL CHANGE AND RIVER ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

River channels tend to a dynamic equilibrium driven by the dynamics of water and sediment discharge. The resulting fluctuating pattern of channel form is affected by the slope, the substrate erodibility, and the vegetation in the river corridor and in the catchment. Geomorphology is basic to river biodiversity and ecosystem functioning since the channel pattern provides habitat for the biota and physical framework for ecosystem processes. Human activities increasingly change the natural drivers of channel morphology on a global scale (e.g. urbanization increases hydrological extremes, and clearing of forests for agriculture increases sediment yield). In addition, human actions common along world rivers impact channel dynamics directly, e.g. river regulation simplifies and fossilizes channel form. River conservation and restoration must incorporate mechanisms of channel formation and ecological consequences of channel form and dynamics. This article (1) summarizes the role of channel form on biodiversity and functioning of river ecosystems, (2) describes spatial complexity, connectivity and dynamism as three key hydromorphological attributes, (3) identifies prevalent human activities that impact these key components and (4) analyzes gaps in current knowledge and identifies future research topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.

    Google Scholar 

  • Aldridge, K. T., J. D. Brookes & G. G. Ganf, 2009. Rehabilitation of stream ecosystem functions through the reintroduction of coarse particulate organic matter. Restoration Ecology 17: 97–106.

    Google Scholar 

  • Amoros, C. & A. L. Roux, 1988. Interaction between water bodies within the floodplains of large rivers: function and development of connectivity. Münstersche Geographische Arbeiten 29: 125–130.

    Google Scholar 

  • Arthington, A. H., S. E. Bunn, N. L. Poff & R. J. Naiman, 2006. The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16: 1311–1318.

    PubMed  Google Scholar 

  • Baldi, G. & Paruelo, J. M., 2008. Land-use and land cover dynamics in Saouth American temperate grasslands. Ecology and Society 13: 6. [online] URL: http://www.ecologyandsociety.org/vol13/iss2/art6/.

  • Basque Government, 2005. Confrontación de la situación administrativa de presas y azudes de la Comunidad Autónoma del País Vasco: 390 pp.

  • Baxter, C. V., K. D. Fausch & W. C. Saunders, 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50: 201–220.

    Google Scholar 

  • Beisel, J.-N., P. Usseglio-Polatera, S. Thomas & J.-C. Moreteau, 1998. stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389: 73–88.

    Google Scholar 

  • Beisel, J.-N., P. Usseglio-Polatera & J.-C. Moreteau, 2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia 422(423): 163–171.

    Google Scholar 

  • Benda, L., N. L. Poff, D. Miller, T. Dunne, G. Reeves, M. Pollock & G. Pess, 2004. Network dynamics hypothesis: spatial and temporal organization of physical heterogeneity in rivers. BioScience 54: 413–427.

    Google Scholar 

  • Bond, N. R., S. Sabater, A. Glaister, S. Roberts & K. Vanderkruk, 2006. Colonisation of introduced timber by algae and invertebrates, and its potential role in aquatic ecosystem restoration. Hydrobiologia 556: 303–316.

    Google Scholar 

  • Boulton, A. J., 2000. The subsurface macrofauna. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, San Diego, California: 337–362.

    Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Vallet, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.

    Google Scholar 

  • Bretschko, G., 1991. The limnology of a low order alpine gravel bed stream (Ritrodat-Lunz study area, Austria). Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24: 1333–1339.

    Google Scholar 

  • Brock, M. A., D. L. Nielsen, R. J. Shiel, J. D. Green & J. D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediment of temporary wetlands. Freshwater Biology 48: 1207–1218.

    Google Scholar 

  • Brunke, M., 1999. Colmation and depth filtration within streambeds: retention of particles in hyporheic interstices. International Review of Hydrobiology 84: 99–117.

    CAS  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    PubMed  Google Scholar 

  • Butler, D. R., 1995. Zoogeomorphology: Animals as Geomorphic Agents. Cambridge University Press, Cambridge.

    Google Scholar 

  • Corenblit, D., E. Tabacchi, J. Steiger & A. M. Gurnell, 2007. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth-Science Reviews 84(1/2): 56–86.

    Google Scholar 

  • Crook, D. A. & A. I. Robertson, 1999. Relationship between riverine fish and woody debris: implications for lowland rivers. Marine Freshwater Research 50: 941–953.

    Google Scholar 

  • Dudley, T. & N. H. Anderson, 1982. A survey of invertebrates associated with wood debris in aquatic habitats. Melanderia 39: 1–21.

    Google Scholar 

  • Elliott, A. H. & A. H. Brooks, 1997. Transfer of non-sorbing solutes to a stream bed with bed forms: laboratory experiments. Water Resources Research 33: 137–151.

    CAS  Google Scholar 

  • Elósegui, A., X. Arana, A. Basaguren & J. Pozo, 1995. Self-purification processes in a medium-sized stream. Environmental Management 19: 931–939.

    Google Scholar 

  • European Union Water Framework Directive, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.

  • Fernandes, M., Herrero, J., Aulagnier, S. & Amori, G., 2008. Galemys pyrenaicus. In IUCN 2009. IUCN Red List of Threatened Species. Version 2009.1. www.iucnredlist.org.

  • Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and Oceanography 40: 159–164.

    CAS  Google Scholar 

  • Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert ecosystem following flash flooding. Ecological Monographs 52: 93–110.

    CAS  Google Scholar 

  • Fisher, S. G., N. B. Grimm, E. Martí & R. Gómez, 1998. Hierarchy, spatial configuration and nutrient cycling in a desert stream. Australian Journal of Ecology 23: 41–52.

    Google Scholar 

  • Fisher, S. G., J. B. Heffernan, R. A. Sponseller & J. R. Welter, 2007. Functional ecomorphology: feedbacks between form and function in fluvial landscape ecosystems. Geomorphology 89: 84–96.

    Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Frisell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Google Scholar 

  • Fuss, C. L. & L. A. Smock, 1996. Spatial and temporal variation of microbial respiration rates in a blackwater stream. Freshwater Biology 36: 339–349.

    Google Scholar 

  • Galat, D. L., L. H. Fredrickson, D. D. Humburg, K. J. Bataille, J. R. Bodie, J. Dohrenwend, G. T. Gelwicks, J. E. Havel, D. L. Helmers, J. B. Hooker, J. R. Jones, M. F. Knowlton, J. Kubisiak, J. Mazourek, A. C. McColpin, R. B. Renken & R. D. Semlistsch, 1998. Flooding to restore connectivity of regulated, large-river wetlands. BioScience 48: 721–733.

    Google Scholar 

  • Gibert, J., M.-J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water-groundwater ecotones. In Naiman R. J. & H. Décamps (eds), The ecology and management of aquatic-terrestrial ecotones. United Nations Educational, Scientific, and Cultural Organization, Paris and Parthenon Publishers, Carnforth, UK: 199–226.

  • Gippel, C. J., I. C. O′Neill & B. L. Finlayson, 1992. The Hydraulic Basis for Snag Management. Centre for Environmental Applied Hydrology. Department of Civil and Agricultural Engineering, University of Melbourne, Victoria, Australia.

    Google Scholar 

  • Gleick, P. H., 2003. Global freshwater resources: soft-path solutions for the 21st century. Science 302: 1524–1528.

    CAS  PubMed  Google Scholar 

  • Gregory, S. V., F. J. Swanson, W. A. McKee & K. W. Cummins, 1991. An ecosystem perspective of riparian zones. Focus on links between land and water. BioScience 41: 540–551.

    Google Scholar 

  • Gregory, S. V., Boyer, K. L. & Gurnell, A. M, (eds), 2003. The ecology and management of wood in world rivers. American Fisheries Society, Bethesda.

  • Grimm, N. B., 1987. Nitrogen dynamics during succession in a desert stream. Ecology 68: 1157–1170.

    CAS  Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.

    CAS  Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. Journal of the North American Bentholological Society 8: 293–307.

    Google Scholar 

  • Gurnell, A. M., G. E. Petts, D. M. Hannah, B. P. G. Smith, P. J. Edwards, J. Kollmann, J. V. Ward & K. Tockner, 2001. Riparian vegetation and island formation along the gravel-bed Fiume Tagliamento, Italy. Earth Surface Processes and Landforms 26: 31–62.

    Google Scholar 

  • Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. C. Cromack & K. W. Cummins, 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research 15: 133–302.

    Google Scholar 

  • Harper, D. M., C. D. Smith & P. J. Barham, 1992. Habitat as the building blocks for river conservation assessment. In Boon, P. J., P. Calow & G. E. Petts (eds), River Conservation and Management. John Wiley & Sons Ltd., Chichester: 311–319.

    Google Scholar 

  • Harvey, J. W. & K. E. Bencala, 1993. The effect of stream bed topography on surface–subsurface water exchange in mountain catchments. Water Resource Research 29: 89–98.

    Google Scholar 

  • Harvey, G. L. & N. J. Clifford, 2008. Distribution of biologically functional habitats within a lowland river, United Kingdom. Aquatic Ecosystem Health and Management 11: 465–473.

    Google Scholar 

  • Harvey, G. L., N. J. Clifford & A. M. Gurnell, 2008. Towards and ecologically meaningful classification of the flow biotope for river inventory, rehabilitation, design and appraisal purposes. Journal of Environmental Management 88: 638–650.

    PubMed  Google Scholar 

  • Hawkes, H. A., 1975. River zonation and classification. In Whitton, B. A. (ed.), River Ecology. Blackwell, Oxford: 312–374.

    Google Scholar 

  • Heine, R. A. & C. L. Lant, 2009. Spatial and temporal patterns of stream channel incision in the Loess Region of the Missouri River. Annals of the Association of American Geographers 99: 231–253.

    Google Scholar 

  • Helfield, J. M. & R. J. Naiman, 2006. Keystone interactions: salmon and bear in riparian forests of Alaska. Ecosystems 9: 167–180.

    Google Scholar 

  • Hendricks, S. P. 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. Journal of the North American Benthological Society 12: 70–78.

    Google Scholar 

  • Hoffman, A. & D. Hering, 2000. Wood-associated macroinvertebrate fauna in central European streams. International Review of Hydrobiology 85: 25–48.

    Google Scholar 

  • Hudson, P. F., H. Middelkoop & E. Stouthamer, 2008. Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment. Geomorphology 101: 209–236.

    Google Scholar 

  • Huet, M., 1962. Influence du courant sur la distribution des poissons dans les eaux courantes. Aquatic Sciences-Research Across Boundaries 24: 412–432.

    Google Scholar 

  • Hupp, C. R. & W. R. Osterkamp, 1996. Riparian vegetation and fluvial geomorphic processes. Geomorphology 14: 277–295.

    Google Scholar 

  • Hupp, C. R., A. R. Pierce & G. B. Noe, 2009. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA. Wetlands 29(2): 413–429.

    Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 2000. Life history and production of aquatic insects. Annual Review of Entomology 45: 83–110.

    CAS  PubMed  Google Scholar 

  • Hutchinson, G. E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93: 145–159.

    Google Scholar 

  • Hynes, H. B. N., 1975. The stream and its valley. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 19: 1–15.

    Google Scholar 

  • Hynes, H. B. N., 1976. Biology of Plecoptera. Annual Review of Entomology 21: 135–153.

    Google Scholar 

  • Ilies, J. & L. Botosaneanu, 1963. Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considerées surtout du point de vue faunistique. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

  • Jones, J. B., S. G. Fisher & N. B. Grimm, 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76: 942–952.

    Google Scholar 

  • Junk, W. J. & Wantzen, K. M., 2003. The flood pulse concept: new aspects, approaches and applications, an update. In Welcomme R. L. & T. Petr (eds), Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Vol. 1. Food and Agriculture Organization of the United Nations & Mekong River Commission. FAO Regional Office for Asia and the Pacific, Bangkok. RAP Publication 2004/16: 117–140.

  • Junk, W. J., Bayley, P. B. & Sparks, R. E., 1989. The flood-pulse concept in river-floodplain systems. In Dodge D. P. (ed), Proceedings of the International Large River Symposium. Canadian Special Publication in Fisheries and Aquatic Sciences.

  • Kail, J. & D. Hering, 2009. The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Research and Applications 25: 537–550.

    Google Scholar 

  • Kail, J., S. C. Jähnig & D. Hering, 2009. Relation between floodplain land use and river hydromorphology on different spatial scales: a case study from two lower-mountain catchments in Germany. Fundamental and Applied Limnology 164: 63–73.

    Google Scholar 

  • Kasahara, T. & A. R. Hill, 2006. Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada. Hydrological Processes 20: 4278–4305.

    Google Scholar 

  • Katano, O., T. Nakamura & S. Yamamoto, 2006. Intraguild indirect effects through trophic cascades between stream-dwelling fishes. Journal of Animal Ecology 75: 167–175.

    PubMed  Google Scholar 

  • Kondolf, G. M., Boulton, A. J., O’Daniel, S., Poole, G. C., Rahel, F. J., Stanley, E. H., Wohl, E., Bång, A., Carlstrom, J., Cristoni, C., Huber, H., Koljonen, S., Louhi, P. & Nakamura, K., 2006. Process-based ecological river restoration: visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecology and Society 11(2). [online] URL: http://www.ecologyandsociety.org/vol11/iss2/art5/.

  • Laeser, S. R., C. V. Baxter & K. D. Fausch, 2005. Riparian vegetation loss, stream channelization, and web-weaving spiders in northern Japan. Ecological Research 20: 646–651.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Lancaster, J., 2000. Geometric scaling of microhabitat patches and their efficacy as refugia during disturbance. Journal of Animal Ecology 69: 442–457.

    Google Scholar 

  • Lenders, H. J. R., B. G. W. Aarts, H. Strijbosch & G. Van der Velde, 1998. The role of reference and target images in ecological recovery of river systems: lines of thought in the Netherlands. In Nienhuis, P. H., R. S. E. Leuven & A. M. J. Ragas (eds), New Concepts for Sustainable Management of River Basins. Backhuys, The Netherlands: 35–52.

    Google Scholar 

  • Malard, F., K. Tockner, M.-J. Dole-Olivier & J. V. Ward, 2002. A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshwater Biology 47: 621–640.

    Google Scholar 

  • Malcolm, I. A., C. Soulsby, A. F. Youngson & D. Hannah, 2005. Catchment-scale controls on groundwater-surface water interactions in the hyporheic zone: implications for salmon embryo survival. River Research and Applications 21: 977–989.

    Google Scholar 

  • Maser, C. & J. R. Sedell, 1994. From the Forest to the Sea. The Ecology of Wood in Streams, Rivers, Estuaries and Oceans. St. Lucie Press, Delray Beach, Florida.

    Google Scholar 

  • May, C. L. & R. E. Gresswell, 2004. Spatial and temporal patterns of debris-flow deposition in the Oregon Coast Range, USA. Geomorphology 57: 135–149.

    Google Scholar 

  • McLaughlin, R. L., L. Porto, D. L. G. Noakes, J. R. Baylis, L. M. Carl, H. R. Dodd, J. D. Goldstein, D. B. Hayes & R. G. Randall, 2006. Effects of low-head barriers on stream fishes: taxonomic affiliations and morphological correlates of sensitive species. Canandian Journal Fisheries and Aquatic Sciences 63: 766–779.

    Google Scholar 

  • Metzler, G. M. & L. A. Smock, 1990. Storage and dynamics of subsurface detritus in a sand-bottomed stream. Canadian Journal of Fisheries and Aquatic Sciences 47: 588–594.

    Google Scholar 

  • Meyer, J. L., D. L. Strayer, J. B. Wallace, S. L. Eggert, G. S. Helfman & N. E. Leonard, 2007. The contribution of headwater streams to biodiversity in river networks. Journal of the American Water Resources 43: 86–103.

    Google Scholar 

  • Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington, DC. Indicators. Leaflet. ECNC.

    Google Scholar 

  • Miller, S. W., D. Wooster & J. Li, 2007. Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshwater Biology 52: 2494–2510.

    Google Scholar 

  • Mills, D., 1989. Ecology and Management of Atlantic Salmon. Chapman & Hall, London.

    Google Scholar 

  • Murray, A. B., M. A. F. Knaapen, M. Tal & M. L. Kirwan, 2008. Biomorphodynamics: physical–biological feedbacks that shape landscapes. Water Resources Research 44: W11301. doi:10.1029/2007WR006410.

    Google Scholar 

  • Mutz, M., E. Kalbus & S. Meinecke, 2007. Effect of instream wood on vertical water flux in low-energy sand bed flume experiments. Water Resources Research 43: W10424. doi:10.1029/2006WR005676.

    Google Scholar 

  • Naegeli, M. W. & U. Uehlinger, 1997. Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed river. Journal of the North American Benthological Society 16: 794–804.

    Google Scholar 

  • Naiman, R. J., J. J. Latterell, N. E. Pettit & J. D. Olden, 2008. Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience 340: 629–643.

    Google Scholar 

  • Nelson, P. A., J. G. Venditti, W. E. Dietrich, J. W. Kirchner, H. Ikeda, F. Iseya & L. S. Sklar, 2009. Response of bed surface patchiness to reductions in sediment supply. Journal of Geophysical Research-Earth Surface 114: F02005. doi:10.1029/2008JF001144.

    Google Scholar 

  • Newson, M. D. & R. G. Large, 2006. “Natural” rivers, “hydromorphological quality” and river restoration: a challenging new agenda for applied fluvial geomorphology. Earth Surface Processes and Landforms 31: 1606–1624.

    CAS  Google Scholar 

  • Nilsson, C., E. Nilsson, M. E. Johansson, M. Dynesius, G. Grelsson, S. Xiong, R. Jansson & M. Danving, 1993. Processes structuring riparian vegetation. Current Topics in Botanical Research 1: 419–431.

    Google Scholar 

  • Nilsson, C., C. A. Reidi, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308: 405–408.

    CAS  PubMed  Google Scholar 

  • Nores, C., 2007. Galemys pyrenaicus (E. Geoffroy Saint-Hilaire, 1811). In Palomo, L. J., J. Gisbert & J. C. Blanco (eds), Atlas y Libro Rojo de los Mamíferos Terrestres de España. Dirección General para la Biodiversidad. SECEM - SECEMU, Madrid: 96–98.

    Google Scholar 

  • Oki, T. & S. Kanae, 2006. Global hydrological cycles and world water resources. Science 313: 1068–1072.

    CAS  PubMed  Google Scholar 

  • Oldeman, R. A. A., 1983. Tropical rain forest, architecture, silvigenesis and diversity. In Sutton, S. L., T. C. Whitmore & A. C. Chadwick (eds), Tropical Rain Forests: Ecology and Management. Blackwell, Oxford: 139–150.

    Google Scholar 

  • Paetzold, A., C. J. Shubert & K. Tockner, 2005. Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8: 748–759.

    Google Scholar 

  • Paillex, A., E. Castella & G. Carron, 2007. Aquatic macroinvertebrate response along a gradient of lateral connectivity in river floodplain channels. Journal of the North American Benthological Society 26: 779–796.

    Google Scholar 

  • Parsons, M. & M. C. Thoms, 2007. Hierarchical patterns of physical-biological associations in river ecosystems. Geomorphology 89: 127–146.

    Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: toward mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Google Scholar 

  • Pringle, C. M., 2001. What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17: 2685–2689.

    Google Scholar 

  • Quinn, T. P., S. M. Carlson, S. M. Gende & H. B. Rich, 2009. Transportation of Pacific salmon carcasses from streams to riparian forests by bears. Canadian Journal of Zoology-Revue Canadienne de Zoologie 87(3): 195–203.

    Google Scholar 

  • Rabeni, C. F., K. E. Doisy & L. D. Zweig, 2005. Stream invertebrate community functional responses to deposited sediment. Aquatic Sciences 67: 395–402.

    Google Scholar 

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, W. G. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.

    Google Scholar 

  • Revenga, C., J. Brunner, N. Henninger, K. Kassem & R. Payne, 2000. Pilot Analysis of Global Ecosystems: Freshwater Systems. World Resources Institute, Washington, DC.

    Google Scholar 

  • Roberts, J. H. & P. L. Angermeier, 2007. Movement responses of stream fishes to introduced corridors of complex cover. Transactions of the American Fisheries Society 136: 971–978.

    Google Scholar 

  • Rosgen, D. L., 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado (USA).

    Google Scholar 

  • Rovira, A. & C. Ibañez, 2007. Sediment management options for the lower Ebro River and its delta. Journal of Soils and Sediments 7: 285–295.

    CAS  Google Scholar 

  • Savant, S. A., D. D. Reible & L. J. Thibodeaux, 1987. Convective transport within stable river sediments. Water Resources Research 23: 1763–1768.

    CAS  Google Scholar 

  • Scealy, J. A., S. J. Mika & A. J. Boulton, 2007. Aquatic macroinvertebrate communities on wood in an Australian lowland river: experimental assessment of the interactions of habitat, substrate complexity and retained organic matter. Marine and Freshwater Research 58: 153–165.

    Google Scholar 

  • Schälchli, U., 1992. The clogging of coarse gravel river beds by fine sediment. Hydrobiologia 235(236): 189–197.

    Google Scholar 

  • Schlief, J. & M. Mutz, 2009. Effect of sudden flow reduction on the decomposition of alder leaves (Alnus glutinosa [L.] Gaertn.) in a temperate lowland stream: a mesocosm study. Hydrobiologia 624: 205–217.

    CAS  Google Scholar 

  • Scott, M. L., G. C. Lines & G. T. Auble, 2004. Channel incision and patterns of cottonwood stress and mortality along the Mojave River, California. Journal of Arid Environments 44: 99–414.

    Google Scholar 

  • Smith, C. L. & Powell, C. R., 1971. The Summer Fish Communities of Brier Creek. Marshall County, Oklahoma. American Museum Novitates No 2458, 30 pp.

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.

    Google Scholar 

  • Standford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.

    Google Scholar 

  • Statzner, B. & B. Higler, 1985. Questions and comments on the river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 42: 1038–1044.

    Google Scholar 

  • Surian, N., Rinaldi, M., Pellegrini, L., Audisio, C., Maraga, F., Teruggi, L. B., Turitto, O. & Ziliani, L., 2009. Channel adjustments in northern and central Italy over the last 200 years. Geological Society of America Special Paper 451: 83–95. doi:10.1130/2009.2451(05).

    Google Scholar 

  • Taylor, B. W., A. S. Flecker & R. O. Hall, 2006. Loss of a harvested fish species disrupts carbon flow in a diverse tropical river. Science 313: 833–836.

    CAS  PubMed  Google Scholar 

  • Thoms, M. C. & M. E. Parsons, 2002. Ecogeomorphology: an interdisciplinary approach to river science. International Association of Hydrological Sciences 227: 113–119.

    Google Scholar 

  • Thorne, C. R., R. G. Allen & S. Andrew, 1996. Geomorphological river channel reconnaissance for river analysis, engineering and management. Transactions of the Institute of British Geographers 21: 4969–4983.

    Google Scholar 

  • Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: a heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305–308.

    Google Scholar 

  • Thorp, J. H., M. C. Thoms & M. D. Delong, 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22: 123–147.

    Google Scholar 

  • Tomanova, S. & P. Usseglio-Polatera, 2007. Patterns of benthic community traits in neotropical streams: relationships to mesoscale spatial variability. Fundamental and Applied Limnology 170: 243–255.

    Google Scholar 

  • Trimble, S. W. & A. C. Mendel, 1995. The cow as a geomorphic agent – a critical review. Geomorphology 13: 233–253.

    Google Scholar 

  • UNEP, 2007. Global environment outlook 4. Environment for development. United Nations Environment Programme. United Nations, Valletta, Malta.

  • USEPA, 2000, Nutrient criteria technical guidance manual: lakes and Reservoirs. Office of Water, Office of Science and Technology, Report EPA-822-B00-001, Washington, DC.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Google Scholar 

  • Vaux, W. G., 1962. Interchange of stream and intergravel water in a salmon spawning riffle. United States Fisheries and Wildlife Service Research Reports: Fisheries 405: 1–11.

    Google Scholar 

  • Verspoor, E., L. Stradmeyer & J. Nielsen (eds), 2007. The Atlantic Salmon. Genetics, Conservation and Management. Blackwell, Oxford.

    Google Scholar 

  • Vörösmarty, C. J., M. Meybeck, B. Fekete, K. Sharma, P. Green & J. Syvitski, 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planetary Change 39: 169–190.

    Google Scholar 

  • Ward, J. V., 1992. Aquatic Insect Ecology. 1. Biology and Habitat. Wiley, New York.

    Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. D. & S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Ward, J. V. & K. Tockner, 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biology 46: 807–819.

    Google Scholar 

  • Welcomme, R. L., 1985. River fisheries. FAO Fisheries Technical Paper 262. Rome, Food and Agricultural Organization of the United Nations: 330 pp.

  • White, D. S., 1993. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society 12: 61–69.

    Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.

    Google Scholar 

  • Williams, J. D., M. L. Warren, K. S. Cummings, J. L. Harris & R. J. Neves, 1993. Conservation status of fresh-water mussels of the United States and Canada. Fisheries 18: 6–22.

    Google Scholar 

  • Winterbourn, M. J., J. S. Rounick & B. Cowie, 1981. Are New Zealand stream ecosystems really different? New Zealand Journal of Marine and Freshwater Research 15: 321–328.

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the Project ‘Complextream: effects of channel complexity on stream communities and ecosystem functioning’, funded by the Spanish Ministry of Science and Innovation (project CGL2007-65176/HID). Stan Gregory (Oregon State University) checked the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Elosegi.

Additional information

Guest editors: R. J. Stevenson, S. Sabater / Global Change and River Ecosystems – Implications for Structure, Function and Ecosystem Services

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elosegi, A., Díez, J. & Mutz, M. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657, 199–215 (2010). https://doi.org/10.1007/s10750-009-0083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0083-4

Keywords

Navigation