Skip to main content
Log in

A rapid assessment of the sedimentary buffering capacity towards free sulphides

  • EUROPEAN LAGOONS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Combined field surveys and laboratory studies were conducted in two Italian coastal lagoons, which differ for geomorphology, hydrodynamics and eutrophication degree (Sacca di Goro and Lesina lagoons, Adriatic Sea). Research aimed at assessing with a rapid technique the potential buffering capacity of sedimentary iron towards sulphides. In Spring and Summer 2004, the main pools of iron and sulphides were analysed in the uppermost sediment horizon (0–5 cm) at four stations in each lagoon. In parallel, experiments with laboratory incubations of sediment slurries were carried out at two sites in each lagoon in order to assess the sediment capacity of binding and retaining sulphides. Sediment slurries were kept stirred and anoxic with N2 purging. Aliquots of dissolved sulphides (DS) were then added and DS concentrations were monitored until they were undetectable. On average, the total reactive iron (RFe), extracted with 6 N HCl, ranged from 170 to 400 μmol cm−3 in the Sacca di Goro stations, and comprised between 40 and 150 μmol cm−3 in the Lesina sites. The labile iron ferric quota (LFe: extractable with 0.5 N HCl) is considered representative of the microbially reducible iron fraction and was highest in spring in Sacca di Goro (up to 20 μmol cm−3). Differences among stations evidenced by PCA analysis, can be inferred from RFe, LFe and AVS, which represent the iron buffer and its saturation status, respectively. The sedimentary DS uptake was 6 μmol cm−3 of fresh sediment in Lesina and 8–12 μmol cm−3 in Sacca di Goro, indicating a direct relationship between DS removal and iron availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azzoni, R., G. Giordani, M. Bartoli, D. T. Welsh & P. Viaroli, 2001. Iron, Sulphur and Phosphorus cycling in the rhyzosphere sediments of a eutrophic Ruppia cirrhosa meadow of the Valle Smarlacca (Italy). Journal of Sea Research 45: 15–26.

    Article  CAS  Google Scholar 

  • Azzoni, R., G. Giordani & P. Viaroli, 2005. Iron–sulfur–phosphorus interactions: implications for sediment buffering capacity in a mediterranean eutrophic lagoon (Sacca di Goro, Italy). Hydrobiologia 550: 131–148.

    Article  CAS  Google Scholar 

  • Bartoli, M., D. Nizzoli, P. Viaroli, E. Turolla, G. Castaldelli, E. A. Fano & R. Rossi, 2001. Impact of Tapes philippinarum farming on nutrient dynamics and benthic respiration in the Sacca di Goro. Hydrobiologia 455: 203–212.

    Article  Google Scholar 

  • Berner, R. A., 1970. Sedimentary pyrite formation. American Journal of Science 268: 1–23.

    CAS  Google Scholar 

  • Canfield, D. E., 1989. Reactive iron in sediments. Geochimica et Cosmochimica Acta 53: 619–632.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D. E., B. Thamdrup & E. Kristensen, 2005. Aquatic geomicrobiology. In Southward, A. J., P. A. Tyler, C. M. Young & L. A. Fuiman (eds), Advances in Marine Biology 48: 640.

  • Castel, J., P. Caumette & R. Herbert, 1996. Eutrophication gradients in coastal lagoons as exemplified by the Bassin d’Arcachon and Étang du Prévost. Hydrobiologia 329: ix–xxviii.

    Article  Google Scholar 

  • Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulphide in natural waters. Limnology and Oceanography 14: 454–459.

    CAS  Google Scholar 

  • Crossland, C. J., H. H. Kremer, H. J. Lindeboom, J. I. Marshall Crossland & M. D. A. Le Tissier, 2005. Coastal Fluxes in the Anthropocene. The Land–Ocean Interactions in the Coastal Zone Project of the International Geosphere–Biosphere Programme. Global Change—The IGBP Series no. XX. Springer: 232.

  • de Wit, R., L. J. Stal, B. Aa. Lomstein, R. A. Herbert, H. van Gemerden, P. Viaroli, V. U. Ceccherelli, F. Rodríguez-Valera, M. Bartoli, G. Giordani, R. Azzoni, B. Shaub, D. T. Welsh, A. Donnely, A. Cifuentes, J. Anton, K. Finster, L. B. Nielsen, A. G. Underlien Pedersen, A. T. Neubauer, M. A. Colangelo & S. K. Heijs, 2001. ROBUST: the ROle of BUffering capacities in STabilising coastal lagoon ecosystems. Continental Shelf Research 21: 2021–2041.

    Article  Google Scholar 

  • Dinelli, E. & F. Lucchini, 1999. Sediment supply to the Adriatic Sea basin from the Italian rivers: geochemical features and environmental constraints. Giornale di Geologia 61: 121–132.

    Google Scholar 

  • Fabbrocini, A., A. Guarino, T. Scirocco, M. Franchi & R. D’Adamo, 2005. Integrated biomonitoring assessment of the Lesina Lagoon (Southern Adriatic Coast, Italy): preliminary results. Chemistry and Ecology 21(6): 479–489.

    Article  CAS  Google Scholar 

  • Fossing, H. & B. B. Jørgensen, 1989. Measurement of bacterial sulphate reduction in sediment: evaluation of a single-step chromium reduction method. Biogeochemistry 8: 205–222.

    Article  CAS  Google Scholar 

  • Giordani, G., R. Azzoni, M. Bartoli & P. Viaroli, 1997. Seasonal variations of sulphate reduction rates, sulphur pools and iron availability in the sediment of a dystrophic lagoon (Sacca di Goro, Italy). Water, Air and Soil Pollution 99: 363–371.

    Google Scholar 

  • Heijs, S. K., R. Azzoni, G. Giordani, H. M. Jonkers, D. Nizzoli, P. Viaroli & H. van Gemerden, 2000. Sulphide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquatic Microbial Ecology 23: 85–95.

    Article  Google Scholar 

  • Heijs, S. K., H. M. Jonkers, H. van Gemerden, B. E. M. Schaub & L. J. Stal, 1999. The buffering capacity of a coastal lagoon (Basin d’Arcachon, France)—the relative importance of chemical and biological processes. Estuarine Coastal and Shelf Science 49: 21–35.

    Article  CAS  Google Scholar 

  • Hemminga, M. A., 1998. The root/rhyzome system of seagrasses: an asset and a burden. Journal of Sea Research 39: 183–196.

    Article  Google Scholar 

  • Jørgensen, B. B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography 22: 814–832.

    Article  Google Scholar 

  • Kostka, J. E., B. Thamdrup, R. N. Glud & D. E. Canfield, 1999. Rates and pathways of carbon oxidation in permanently cold artic sediments. Marine Ecology Progress Series 180: 7–21.

    Article  CAS  Google Scholar 

  • Kuhl, M. & B. B. Jørgensen, 1992. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Applied and Environmental Microbiology 58(4): 1164–1174.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. & E. J. P. Phillips, 1987. Rapid assay for reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology 53: 1536–1540.

    PubMed  CAS  Google Scholar 

  • Luther, G. W. III, 1991. Pyrite synthesis via polysulphide compounds. Geochimica et Cosmochimica Acta 55: 2839–2849.

    Article  CAS  Google Scholar 

  • Luther, G. W. III, 2005. Acid volatile sulfide—a comment. Marine Chemistry 97: 198–205.

    Article  CAS  Google Scholar 

  • Manini, E., P. Breber, R. D’Adamo, F. Spagnoli & R. Danovaro, 2005. Lagoon of Lesina. In Giordani, G., P. Viaroli, D. P. Swaney, C. N. Murray, J. M. Zaldívar & J. I. Marshall Crossland (eds), Nutrient Fluxes in Transitional Zones of the Italian Coast. LOICZ Reports & Studies No. 28, LOICZ, Texel, The Netherlands: 49–54.

  • Meysman, F. J. R. & J. J. Middleburg, 2005. Acid-volatile sulphide (AVS)—a comment. Marine Chemistry 97: 206–212.

    Article  CAS  Google Scholar 

  • Pearl, H. W., 2006. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: interactive effects of human and climatic perturbations. Ecological Engineering 26: 40–54.

    Article  Google Scholar 

  • Pedersen, O., J. Borum, C. M. Duarte & M. D. Fortes, 1998. Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Marine Ecology Progress Series 169: 283–288.

    Article  CAS  Google Scholar 

  • Raiswell, R. & D. E. Canfield, 1998. Sources of iron for pyrite formation in marine sediments. American Journal of Sciences 298: 219–245.

    CAS  Google Scholar 

  • Reeburgh, W. S., 1967. An improved interstitial water sampler. Limnology and Oceanography 12: 163–165.

    CAS  Google Scholar 

  • Rickard, D., 1995. Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms. Geochimica et Cosmochimica Acta 59: 4367–4380.

    Article  CAS  Google Scholar 

  • Rickard, D. & J. W. Morse, 2005. Acid volatile sulphide (AVS). Marine Chemistry 97: 141–197.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K., C. Prahl & H. Stokholm, 1982. Oxygen release from roots of submerged aquatic macrophytes. Oikos 38: 349–354.

    Article  Google Scholar 

  • Thamdrup, B., H. Fossing & B. B. Jørgensen, 1994. Manganese, iron sulphur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta 58: 5115–5129.

    Article  CAS  Google Scholar 

  • Viaroli, P., M. Bartoli, C. Bondavalli, R. R. Christian, G. Giordani & M. Naldi, 1996. Macrophytes communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia 329: 93–103.

    Article  CAS  Google Scholar 

  • Viaroli, P., M. Bartoli, I. Fumagalli & G. Giordani, 1997. Relationship between benthic fluxes and macrophyte cover in a shallow brackish lagoon. Water, Air and Soil Pollution 99: 533–540.

    CAS  Google Scholar 

  • Viaroli, P., G. Giordani, M. Bartoli, M. Naldi, R. Azzoni, D. Nizzoli, I. Ferrari, J. M. Zaldívar, S. Bencivelli, G. Castaldelli & E. A. Fano, 2006. The Sacca di Goro lagoon and an arm of the Po River. In Wangersky, P. J. (ed). The Handbook of Environmental Chemistry: Estuaries, Vol. 5/H. Springer-Verlag, Berlin: 197–232.

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Italian Ministry of Research and Education under the COFIN project “Nuovi Indicatori di stato Trofico e d’Integrità ecologica Di Ambienti marini costieri e ambienti di transizione (NITIDA)” and by the European Commission under contract n° EVK3-CT-2002-00084 “Development of an Information Technology Tool for the Management of European Southern Lagoons under the influence of river-basin runoff (DITTY)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianmarco Giordani.

Additional information

Guest editors: A. Razinkovas, Z. R. Gasiūnaitė, J. M. Zaldivar & P. Viaroli

European Lagoons and their Watersheds: Function and Biodiversity

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordani, G., Azzoni, R. & Viaroli, P. A rapid assessment of the sedimentary buffering capacity towards free sulphides. Hydrobiologia 611, 55–66 (2008). https://doi.org/10.1007/s10750-008-9457-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9457-2

Keywords

Navigation