Skip to main content
Log in

Differentiated free-living and sediment-attached bacterial community structure inside and outside denitrification hotspots in the river–groundwater interface

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study assessed the functional significance of attached and free-living bacterial communities involved in the process of denitrification in a shallow aquifer of a riparian zone (Garonne River, SW France). Denitrification enzyme activity (DEA), bacterial density (BD) and bacterial community composition (BCC) were measured in two aquifer compartments: the groundwater and the sandy fraction of the sediment deposit. Samples were collected in wells located inside (IHD) and outside (OHD) identified hotspots of denitrification. Despite high BD values (up to 1.14 × 1012 cells m−3), DEA was not detected in the water compartment (< 0.32 mg N–N2O m−3 d−1). The sandy fraction showed detectable DEA (up to 1,389 mg N–N2O m−3 d−1) and, consistent with BD pattern, higher DEA values were measured in IHD zones than in OHD zones. The BCC assessed by 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) partly supported this result: attached and free-living communities were significantly different (< 30% similarity) but patterns of BCC did not cluster according to IHD and OHD zones. Targeting the denitrifying communities by means of a culture enrichment step prior to 16S rDNA PCR-DGGE showed that the free-living and sediment attached communities differed. Most sequences obtained from DGGE profiles of denitrifying communities were affiliated to Proteobacteria and showed low genetic distance with taxa that have already been detected in aquifers (e.g., Azoarcus sp., Acidovorax sp. and Pseudomonas spp.). This study confirms that in the aquifer the sediment-attached fraction exhibits different functions (DEA) from free-living communities and suggests that this functional difference is related to the communities’ structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann, R. I., W. Ludwig & K. H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59: 143–169.

    PubMed  CAS  Google Scholar 

  • Ahn, T. S., O. S. Kim, K. S. Joh, L. P. Spiglazov, V. V. Drucker & S.-H. Hong, 2006. Community analysis of aggregated bacteria in southern Lake Baikal. Hydrobiologia 568: 5–8.

    Article  Google Scholar 

  • An, Y.-J., Y.-H. Joo, I.-Y. Hong, H.-W. Ryu & K.-S. Cho, 2004. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Applied Microbiology and Biotechnology 65: 611–619.

    Article  PubMed  CAS  Google Scholar 

  • APHA, 1992. Standard methods for the examination of water and wastewater. American Public Health Association 18th Edition, Washington DC.

  • Baker, M. A. & P. Vervier, 2004. Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshwater Biology 49: 181–190.

    Article  CAS  Google Scholar 

  • Barer, M. R. & C. R. Harwood, 1999. Bacterial viability and culturability. Advances in Microbial Physiology 41: 93–137.

    Article  PubMed  CAS  Google Scholar 

  • Bekins, B. A., E. M. Godsy & E. Warren, 1999. Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microbial Ecology 37: 263–275.

    Article  PubMed  Google Scholar 

  • Bell, T., J. A. Newman, B. W. Silverman, S. L. Turner & A. K. Lilley, 2005. The contribution of species richness and composition to bacterial services. Nature 436: 1157–1160.

    Article  PubMed  CAS  Google Scholar 

  • Besemer, K., M. M. Moeseneder, J. M. Arrieta, G. J. Herndl & P. Peduzzi, 2005. Complexity of bacterial communities in a river-floodplain system (Danube, Austria). Applied and Environmental Microbiology 71: 609–620.

    Article  PubMed  CAS  Google Scholar 

  • Brettar, I., J. M. Sánchez-Pérez & M. Trémolières, 2002. Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain—correlation with redox potential and organic matter. Hydrobiologia 469: 11–21.

    Article  CAS  Google Scholar 

  • Brinson, M. M., H. D. Bradshaw & E. S. Kane, 1984. Nutrient assimilative capacity of an alluvial floodplain swamp. Journal of Applied Ecology 21: 1041–1057.

    Article  Google Scholar 

  • Brüsch, W. & B. Nilsson, 1993. Nitrate transformation and water movement in a wetland area. Hydrobiologia 251: 103–111.

    Article  Google Scholar 

  • Burgin, A. J. & S. Hamilton, 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5: 89–96.

    Article  Google Scholar 

  • Burt, T. P., L. S. Matchett, K. W. T. Goulding, C. P. Webster & N. E. Haycock, 1999. Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrological Processes 13: 1451–1463.

    Article  Google Scholar 

  • Casamayor, E. O., H. Schäfer, L. Bañeras, C. Pedrós-Alió & G. Muyzer, 2000. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulphurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 66: 499–508.

    Article  PubMed  CAS  Google Scholar 

  • Cavalca, L., E. Dell’Amico & V. Andreoni, 2004. Intrinsic bioremediability of an aromatic hydrocarbon-polluted groundwater: diversity of bacterial population and toluene monooxygenase genes. Applied Microbiology and Biotechnology 64: 576–587.

    Article  PubMed  CAS  Google Scholar 

  • Cavigelli, M. A. & G. P. Robertson, 2001. Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biology & Biochemistry 33: 297–310.

    Article  CAS  Google Scholar 

  • Cho, H.-B., J.-K. Lee & Y.-K. Choi, 2003. The genetic diversity analysis of the bacterial community in groundwater by denaturing gradient gel electrophoresis (DGGE). The Journal of Microbiology 41: 327–334.

    CAS  Google Scholar 

  • Clément, J.-C., G. Pinay & P. Marmonier, 2002. Seasonal dynamics of denitrification along topohydrosequences in three different riparian wetlands. Journal of Environmental Quality 31: 1025–1037.

    PubMed  Google Scholar 

  • Colwell, R. R., & D. J. Grimes, 2000. Non culturable microorganisms in the environment. ASM Press, Washington DC.

    Google Scholar 

  • Crump, B. C., E. V. Armbrust & J. A. Baross, 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology 65: 3192–3204.

    PubMed  CAS  Google Scholar 

  • Duff, J. H., A. P. Jackman, F. J. Triska, R. W. Sheibley & R. J. Avanzino, 2007. Nitrate retention in riparian groundwater at natural and elevated nitrate levels in North Central Minnesota. Journal of Environmental Quality 36: 343–353.

    Article  PubMed  CAS  Google Scholar 

  • Enwall K., L. Philippot & S. Hallin, 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology 71: 8335–8343.

    Article  PubMed  CAS  Google Scholar 

  • Forney, L. J., X. Zhou & C. J. Brown, 2004. Molecular microbial ecology: land of the one-eye king. Current Opinion in Microbiology 7: 210–220.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, U., M. Schallenberg & C. Holliger, 1999. Pelagic bacteria-particle interactions and community-specific growth rates in four lakes along a trophic gradient. Microbial Ecology 37: 49–61.

    Article  PubMed  CAS  Google Scholar 

  • Garabétian, F., M. Petit & P. Lavandier, 1999. Does storage affect epifluorescence microscopic counts of total bacteria in freshwater samples? Comptes Rendus de l’Academie des Sciences. Paris 322: 779–784.

    Google Scholar 

  • Groffman, P. M., A. J. Gold & R. C. Simmons, 1992. Nitrate dynamics in riparian forests: Microbial studies. Journal of Environmental Quality 21: 666–671.

    Article  Google Scholar 

  • Grossart, H. P., T. Kiørboe, K. W. Tang, M. Allgaier, E. M. Yam & H. Ploug, 2006. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquatic Microbial Ecology 42: 19–26.

    Article  Google Scholar 

  • Harvey, R. W., R. L. Smith & L. George, 1984. Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer. Applied and Environmental Microbiology 48: 1197–1202.

    PubMed  CAS  Google Scholar 

  • Haycock, N. E. & T. P. Burt, 1993. Role of floodplain sediments in reducing the nitrate concentration of subsurface run-off: a case study in the Cotswolds, UK. Hydrological Processes 7: 287–295.

    Article  Google Scholar 

  • Hill, A. R., K. J. Devito, S. Campagnolo & K. Sanmugadas, 2000. Subsurface denitrification in a forest riparian zone: interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51: 193–223.

    Article  Google Scholar 

  • Hinkle, S. R., J. H. Duff, F. J. Triska, A. Laenen, E. B. Gates, K. E. Bencala, D. A. Wentz & S. R. Silva, 2001. Linking hyporheic flow and nitrogen cycling near the Willamette River—a large river in Oregon, USA. Journal of Hydrology 244: 157–180.

    Article  CAS  Google Scholar 

  • Holtan-Hartwig, L., P. Dörsch & L. R. Bakken, 2000. Comparison of denitrifying communities in organic soils: kinetics of NO3 and N2O reduction. Soil Biology and Biochemistry 32: 833–843.

    Article  CAS  Google Scholar 

  • Islam, F. S., A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee & J. R. Lloyd, 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430: 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, C. R., 2003. Changes in community properties during microbial succession. Oikos 101: 444–448.

    Article  Google Scholar 

  • Jackson, M. L., 1985. Soil chemical analysis—advanced course, 2nd ed. 11th printing published by the author, Madison, WI (Revised from 1956 edition).

  • Jonkers, H. M. & R. M. M. Abed, 2003a. Identification of aerobic heterotrophic bacteria from the photic zone of a hypersaline microbial mat. Aquatic Microbial Ecology 30: 127–133.

    Article  Google Scholar 

  • Jonkers, H. M., R. Ludwig, R. De Wit, O. Pringault, G. Muyzer, H. Niemann, N. Finke & D. De Beer, 2003b. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain). FEMS Microbiology Ecology 44: 175–189.

    Article  CAS  PubMed  Google Scholar 

  • Kropf, S., H. Heuer, M. Grüning & K. Smalla, 2004. Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. Journal of Microbiological Methods 57: 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Lambs, L., 2000. Correlation of conductivity and stable isotope 18O for the assessment of water origin in river system. Chemical Geology 164: 161–170.

    Article  CAS  Google Scholar 

  • Lehman, R. M., F. F. Roberto, D. Earley, D. F. Bruhn, S. E. Brink, S. P. O’Connell, M. E. Delwiche & F. S. Colwell, 2001. Attached and unattached bacterial communities in a 120-Meter corehole in an acidic, crystalline rock aquifer. Applied and Environmental Microbiology 67: 2095–2106.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, R. M., & S. P. O’Connell, 2002. Comparison of extracellular enzyme activities and community composition of attached and free-living bacteria in porous medium columns. Applied and Environmental Microbiology 68: 1569–1575.

    Article  PubMed  CAS  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman & D. A. Wardle, 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode & K.-H. Schleifer, 2004. ARB: a software environment for sequence data. Nucleic Acids Research 32: 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Lyautey, E., B. Lacoste, L. Ten-Hage, J. L. Rols & F. Garabétian, 2005. Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation. Water Research 39: 380–388.

    Article  PubMed  CAS  Google Scholar 

  • Maître, V., A. C. Cosandey, E. Desagher & A. Parriaux, 2002. Effectiveness of groundwater nitrate removal in a river riparian area: the importance of hydrogeological conditions. Journal of Hydrology 278: 76–93.

    Article  CAS  Google Scholar 

  • McClain, M. E., E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johanston, E. Mayorga, W. H. McDowell & G. Pinay, 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial ad aquatic ecosystems. Ecosystems 6: 301–312.

    Article  CAS  Google Scholar 

  • McMahon, P. B. & J. K. Böhlke, 1996. Denitrification and mixing in a stream-aquifer system: effects on nitrate loading to surface water. Journal of Hydrology 186: 105–128.

    Article  CAS  Google Scholar 

  • Mosier, A. R., J. W. Doran & J. R. Freney, 2002. Managing soil denitrification. Journal of Soil and Water Conservation 57: 505–513.

    Google Scholar 

  • Mouné, S., P. Caumette, R. Matheron & J. C. Willison, 2003. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiology Ecology 44: 117–130.

    Article  CAS  PubMed  Google Scholar 

  • Muyzer, G., T. Brinkhoff, U. Nübel, C. Santegoeds, H. Schäfer & C. Wawer, 1997. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Akkermans, A. D. L., J. D. van Elsas, F. J. De Bruijn (eds), Molecular Microbial Ecology Manual. Kluwer Academics Publishers. Dordrecht, The Netherlands: 1–27.

    Google Scholar 

  • Muyzer, G. & K. Smalla, 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73: 127–141.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. W. & J. L. Pinckney, 1996. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecology 31: 225–247.

    Article  PubMed  Google Scholar 

  • Peterjohn, W. T. & D. L. Correll, 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65: 1466–1475.

    Article  CAS  Google Scholar 

  • Pinay, G., C. Ruffinoni, S. Wondzell & F. Gazelle, 1998. Change in groundwater nitrate concentration in a large river floodplain: denitrification, uptake or mixing? Journal of North American Benthological Society 17: 179–189.

    Article  Google Scholar 

  • Ranjard, L., D. P. H. Lejon, C. Mougel, L. Schehrer, D. Merdinoglu & R. Chaussod, 2003. Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environmental Microbiology 5: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Rafidinarivo, H. F., S. Fujimoto, K. Watanabe, K. Kitazato & N. Kobayashi, 2007. Topographic effects of coastal seas on the composition of the culturable bacterial communities in marine sediments. Hydrobiologia 583: 205–212.

    Article  CAS  Google Scholar 

  • Röling, W. F. M., B. M. van Breukelen, M. Braster, M. T. Goeltom, J. Groen & H. W. van Verseveld, 2000. Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microbial Ecology 40: 177–188.

    PubMed  Google Scholar 

  • Ruffinoni, C., 1994. Rôle des ripisylves dans la réduction des pollutions diffuses en milieu fluvial. Thesis Université Paul Sabatier, Toulouse: 63.

  • Sabater, S., A. Butturini, J. C. Clément, T. Burt, D. Dowrick, M. Hefting, V. Maître, G. Pinay, C. Postolache, M. Rzepecki & F. Sabater, 2003. Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors of variation. Ecosystems 6: 20–30.

    Article  CAS  Google Scholar 

  • Sánchez-Pérez, J. M. & T. Trémolières, 2003. Change in groundwater chemistry as a consequence of suppression of floods: the case of the Rhine floodplain. Journal of Hydrology 270: 89–104.

    Article  Google Scholar 

  • Sánchez-Pérez, J. M., C. Bouey, S. Sauvage, S.Teissier, I. Antiguedad & P. Vervier, 2003a. A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands. Hydrology and Earth System Sciences 7: 87–96.

    Google Scholar 

  • Sánchez-Pérez, J. M., P. Vervier, F. Garabétian, S. Sauvage, M. Loubet, J. L. Rols, T. Bariac & P. Weng, 2003b. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, Southwestern France: Nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrology and Earth System Sciences 7: 97–107.

    Article  Google Scholar 

  • Schimel, J., 1995, Ecosystem consequences of microbial diversity and community structure. In F. S. Chapin III, C. Korner (eds), Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Springer Verlag, New York, NY: 234–259.

    Google Scholar 

  • Soriano S. & N. Walker, 1968. Isolation of ammonia-oxidizing autotrophic bacteria. Journal of Applied Bacteriology 31: 413–497.

    Google Scholar 

  • Takatert, N., J. M. Sánchez-Pérez & M. Trémolières, 1999. Spatial and temporal variations of nutrient concentration in the groundwater of a floodplain: effect of hydrology, vegetation and substrate. Hydrological Processes 13: 1511–1526.

    Article  Google Scholar 

  • Tiedje, J. M., 1994. Denitrifiers. Methods of soil analysis, part 2: Microbiological and biochemical properties, Soil Science Society of America Journal. Madison. WI: 245–267.

  • Van Cleemput, O., P. Boeckx, P. E. Lindgren, & K. Tonderski, 2007. Denitrification in wetlands. In Bothe, H., S. J. Ferguson, W. E. Newton (eds), Biology of the nitrogen cycle. Elsevier, Amsterdam, The Netherlands: 359–367.

    Google Scholar 

  • Watnick, P. & R. Kolter, 2000. Biofilm, City of Microbes. Journal of Bacteriology 182: 2675–2679.

    Article  PubMed  CAS  Google Scholar 

  • Well, R., J. Augustin, K. Meyerc & D. D. Myrold, 2003. Comparison of field and laboratory measurement of denitrification and N2O production in the saturated zone of hydromorphic soils. Soil Biology & Biochemistry 35: 783–799.

    Article  CAS  Google Scholar 

  • Weng, P., J. M. Sánchez-Pérez, S. Sauvage, P. Vervier & F. Giraud, 2003. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: hydrological modelling of a large floodplain (Garonne River, France). Hydrological Processes 17: 2375–2392.

    Article  Google Scholar 

  • Wimpenny, J., W. Manz & U. Szewzyk, 2000. Heterogeneity in biofilms. FEMS Microbiology Reviews 24: 661–671.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari, T. & R. Knowles, 1976. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochemical and Biophysical Research Communications 69: 705–710.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by GIS ECOBAG (Groupement d’Intérêt Scientifique – Ecologie et Economie du Bassin Adour Garonne), A. Iribar was supported by FEDER (Fonds Européen de Développement Régional). We are grateful to C. Mur and D. Dalger for water analysis and F. Julien for field assistance. We also thank the two anonymous reviewers for constructive comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaia Iribar.

Additional information

Handling editor: J. Padisak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iribar, A., Sánchez-Pérez, J.M., Lyautey, E. et al. Differentiated free-living and sediment-attached bacterial community structure inside and outside denitrification hotspots in the river–groundwater interface. Hydrobiologia 598, 109–121 (2008). https://doi.org/10.1007/s10750-007-9143-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9143-9

Keywords

Navigation