Skip to main content
Log in

Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds, Israel

  • Opinion Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The discovery, in the inner coastal plain of Israel, of a deep, secluded subterranean ecosystem, supported by chemosynthetis producing by sulfide-oxidizing bacteria, suggests the existence of a new biome, “Ophel”, with an autonomous energy basis. This biome could provide an ecological and historical basis for explaining the high taxonomic diversity of subterranean faunas, especially of crustaceans. A continuum with the anchialine ecosystems, in which chemoautotrophy is also encountered, as well as with marine hot vents and cold seeps, implies the existence of a second, parallel chemosynthesis-based eukaryotic biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barker, D., 1959. The distribution and systematic position of the Thermosbaenacea. Hydrobiologia 13: 209–235.

    Article  Google Scholar 

  • Bishop, R. E., B. Kakuk & J. J. Torres, 2004. Life in the hypoxic and anoxic zones: metabolism and proximate composition of Caribbean troglobitic crustaceans with observations on the water chemistry of two anchialine caves. Journal of Crustacean Biology 24: 379–392.

    Article  Google Scholar 

  • Botoşăneanu, L. & T. M. Iliffe, 2006. A new species of stygobitic cirolanid (Isopoda:Cirolanidae) from an anchialine cave on Abaco, the Bahamas. Bulletin de L’Insitut Royal des Sciences Naturelles de Belgique 76: 27–31.

    Google Scholar 

  • Culver, D. C. & B. Sket, 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies 62: 11–17.

    Google Scholar 

  • Danielopol, D. L., A. Baltanás & G. Bonaduce, 1995. The darkness syndrome in subsurface-shallow and deep-sea dwelling Ostracoda (Crustacea). In Uiblein, F., J. Ott & M. Stachowitsch (eds), Deep-sea and extreme shallow water habitats: affinities and adaptations. Biosystematics and Ecology Series 13: 123–143.

  • Danielopol, D. L., P. Pospisil & Rouch, 2000. Biodiversity in groundwater: a large-scale view. Trends in Ecology and Evolution 15: 223–224.

  • Engel, A. S. (in press) On the biodiversity of sulfidic karst habitats. Journal of Cave and Karst Studies.

  • Fenchel, T. & R. Riedl, 1970. The sulfide system: a new biotic community underneath the oxidised layer of marines and bottoms. Marine Biology 7: 255--268.

    Article  CAS  Google Scholar 

  • Frumkin, A. & H. Gvirtzman, 2006. Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel. Journal of Hydrology 318: 316–333.

    Article  Google Scholar 

  • Gavrieli, I., A. Burg & J. Guttman, 2002. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judean Group, Israel. Hydrogeology Journal 10: 483–494.

    Article  CAS  Google Scholar 

  • Gold, Th., 1992. The deep, hot biosphere. Proceedings of the National Academy of Sciences 89: 6045–6049.

    Article  CAS  Google Scholar 

  • Humphreys, W. F., 1999. Physico-chemical profile and energy fixation in Bundera Sinkhole and anchialine remiped habitat in northwestern Australia. Journal of the Royal Society of Western Australia 82: 89–98.

    Google Scholar 

  • Humphreys, W. F., 2000a. Background and Glossary. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier, 3–14.

  • Humphreys, W. F., 2000b. Relict faunas and their derivation. In Wilkens, H., D. C. Culvert & W. F. Humphreys (eds), Subterranean environments, Elsevier, 417–432.

  • Humphreys, W. F., 2006. Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany 54: 115–132.

    Article  Google Scholar 

  • Hüppop, K. 2000. How do cave animals cope with the food scarcity in caves? In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier.

  • Hutchinson, E. G., 1965. The ecological theater and the evolutionary play. Yale University Press.

  • Iliffe, T. M., 2000. Anchialine cave ecology. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier 59–76.

  • Iliffe, T. M. & L. Botoşăneanu, 2006. The remarkable diversity of subterranean Cirolanidae (Crustacea:Isopoda) in the peri-Caribbean and Mexican Realm.Bulletin de L’Institut Royal des Sciences Naturelles de Belgique. Biologie 76: 5–20.

    Google Scholar 

  • Jørgensen, B. B. & S. D’Hondt, 2006. A starving majority deep beneath the seafloor. Science 314: 932–934.

    Article  PubMed  Google Scholar 

  • Krajcik, K., 2007. Robot seeks new life - and new funding- in the Abyss of Zacatón. Science 315(5810): 322–324.

    Article  Google Scholar 

  • Levy, G., 2007. First troglobite scorpion from Israel and a new Chaetoid family (Arachnida, Scorpiones). Zoology in the Middle East 40: 91–96.

    Google Scholar 

  • Lin, L. H., P. L. Wang, D. Rumble, J. Lippmann-Pipke, E. Boice, L. M. Pratt, B. Sherwood Lollar, E. L. Brodie, T. C. Hazen, G. L. Anderson, T. Z. DeSantis, D. P. Moser, D. Kershaw & T. C. Onstott, 2006. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314: 479–482.

    Article  PubMed  CAS  Google Scholar 

  • Longley, G., 1981. The Edwards aquifer: earth’s most diverse groundwater ecosystem? International Journal of Speleology 11: 123–128.

    Google Scholar 

  • Moore, W. S., 1999. The subterranean estuary, a reaction zone of ground water and seawater. Marine Chemistry 65: 111–125.

    Article  CAS  Google Scholar 

  • Ott, J. A., R. Novak, F. Schiemer, U. Hentschel, M. Nebelsick & M. Polz, 1991. Tackling the sulfide gradient: a novel strategy involving marine nematodes and chemoautotrophic ectosymbionts. P.S.Z.N.I. Marine Ecology 12: 261–279.

    Article  Google Scholar 

  • Parkes, R. J., G. Webster, B. A. Cragg, A. J. Weightman, C. J. Newberry, T. G. Ferdelman, K. J. Kallmeyer, B. B. Jørgensen, I. W. Aiello & J. C. Fry, 2005. Deep sub-seafloor prokaryotes stimulated at interphases over geological time. Nature 436: 390–394.

    Article  PubMed  CAS  Google Scholar 

  • Pennisi, E., 1993. Saving Hades’ creatures (Edwards Aquifer, Texas). Science News (highbeam.com.library).

  • Pohlman, J. W., T. M. Iliffe & L. A. Cifuentes, 1997. Stable isotope study of organic cycling and the ecology of an Anchialine cave system. Marine Ecology Progress Series. 155: 17–27.

    CAS  Google Scholar 

  • Por, F. D., 1963. The relict aquatic fauna of the Jordan Rift Valley: new contributions and review. Israel Journal of Zoology 12: 47–58.

    Google Scholar 

  • Por, F. D., 1986. Crustacean biogeography of the Late Miocene Middle Eastern Landbridge. In Gore, R. H. & K. L. Heck (eds), Crustacean biogeography. A.A. Balkema: 69–84.

  • Porter, M. L., S. Russell, A. S. Engel & L. A. Stern, 2002. Population studies of the endemic snail Physa spelunca (Gastropoda:Physidae) from Lower Kane Cave, WY. Journal of Cave and Karst Studies 64: 181.

    Google Scholar 

  • Poulson, L. & K. H. Lavoie, 2000.The trophic basis of subterranean ecosystems. In Wilkens, H., D. C. Culver & W. F. Humphreys, (eds), Subterranean ecosystems, Elsevier: 231–249.

  • Rouch, R. & D. L. Danielopol, 1987. L’origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation active. Stygologia 3(4): 345–372.

    Google Scholar 

  • Sarbu, S. M., 2000. Movile cave: A chemoautotrophically based groundwater ecosystem. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier: 319–344.

  • Sarbu, S. M., T. C. Kane & B. K. Kinkle, 1996. A chemoautotrophically based cave ecosystem. Science 272: 1953–1955.

    Article  PubMed  CAS  Google Scholar 

  • Sarbu, S. M., S. Galdenzi, M. Menichetti & G. Gentile, 2000. Geology and biology of the Frasassi Caves in Central Italy: an ecological multidisciplinary study of a hypogenic karst system. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Subterranean ecosystems, Elsevier: 359–378.

  • Sawicki, Th., 2003. Anchialine caves and their ecology. Global Underwater Explorers (http://www.gue.com).

  • Schiemer, F. & J. Ott, 2001. Metabolic levels and microhabitat of an interstitial cephalocarid and micro-isopod. Marine Ecology 22: 13–22.

    Article  Google Scholar 

  • Schram, F. R., 1982. Paleozoic Peracarida of North America. Fieldiana Geologica 33: 95–124.

    Google Scholar 

  • Shen, Y., R. S. Taylor & F. R. Schram, 1998. New spelaeogriphacean (Crustacea:Peracarida) from the Upper Jurassic of China. Contributions to Zoology 68(1): 19–36.

    Google Scholar 

  • Simon, K. S., E. F. Benfield & S. A. Macko, 2003. Food web structure and the role of the epilithic biofilms in cave streams. Ecology 84: 2395–2406.

    Article  Google Scholar 

  • Stevens, T. O. & P. McKinley James, 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270: 450–454.

    Article  CAS  Google Scholar 

  • Tsurnamal, M., 1978. The biology and ecology of the blind prawn Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana 34(2): 195–213.

    Article  Google Scholar 

  • Tsurnamal, M. (in press). A new species of the stygobiotic blind prawn Typhlocaris Calman (Decapoda, Palaemonidae, Typhlocaridinae) from Israel. Crustaceana

  • Tsurnamal, M. & F. D. Por, 1968. The subterranean fauna associated with the blind palaemonid prawn, Typhlocaris galilea Calman. International Journal of Speleology 3: 219–223.

    Google Scholar 

Download references

Acknowledgements

I wish to thank Prof. D.L. Danielopol for his considerate encouragement, Dr. W.F. Humphreys for the many precious bibliographic indications, Prof. B. Sket for his suggestions and Dr. L. Botoşăneanu for his friendly criticism. My thanks are due also to my colleagues from the Hebrew University, to Prof. A. Frumkin and the Masters student I. Naaman, the discoverers of the Ayyalon Cave, to the arachnologist Dr. G. Levy as well as to the microbiologist Prof. A. Oren, and finally I thank my collaborators for many years Drs. Ch. Dimentman, M. Tsurnamal and H.J. Bromley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Dov Por.

Additional information

Dedicated to my teacher, the active nonagerian Acad. Prof. Nicolaie Botnariuc, Bucharest.

Handling editor: K. Martens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Por, F.D. Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds, Israel. Hydrobiologia 592, 1–10 (2007). https://doi.org/10.1007/s10750-007-0795-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0795-2

Keywords

Navigation