Skip to main content
Log in

Diatoms and biomonitoring: should cell size be accounted for?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Despite the fact that biovolume calculation is a common procedure in most phytoplankton and periphyton studies, diatom community analyses are usually based on relative abundance data. In a biomonitoring context, a community metric that accounts for cell size could be of interest due to the potential differences that might exist in nutrient uptake between large and small-sized species. This paper addresses the question of whether diatom community analysis should be based on relative abundance, biovolume or cell surface. The results show that although community structure expressed as relative proportion of taxa varied according to the metric used, the ordinations conducted with each metric were similar. The explained percentage of species variance was slightly higher with the relative abundance metric compared to the metrics based on relative biovolume or cell surface area. Partial CCAs showed that each water chemistry variable generally explained a higher portion of species variance when the relative abundance was used. The analyses conducted with two size groups (small and large taxa) expressed as relative abundance and relative biovolume showed similar results. Moreover, our data showed that there is no significant relationship between diatom size and total phosphorus. According to these results, it seems that relative abundance would be the most appropriate metric to use for biomonitoring purposes. The biovolume and cell surface area calculations added substantially to the total analysis time due to the numerous measurements required, but did not improve the variance explained in community structure, and site ordinations were not significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bernhardt E. S. and Likens G. E. (2004). Controls on periphyton biomass in heterotrophic streams. Freshwater Biology 49: 14–27

    Article  Google Scholar 

  • Biggs B. J. F. (2000). Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19: 17–31

    Article  Google Scholar 

  • Borchardt M. A. (1996). Nutrients. In: Stevenson, R., Bothwell, M. and Lowe, R. L. (eds) Algal Ecology: Freshwater Benthic Ecosystems, pp 184–227. Academic Press, San Diego

    Google Scholar 

  • Busse S. and Snoeijs P. (2002). Gradient responses of epilithic diatom communities in the Bothnian Bay, northern Baltic Sea. Nova Hedwigia 74: 501–525

    Article  Google Scholar 

  • Busse S. and Snoeijs P. (2003). Gradient responses of diatom communities in the Bothnian Sea (northern Baltic Sea) with emphasis on responses to water movement. Phycologia 42: 451–464

    Article  Google Scholar 

  • Cattaneo A. (1987). Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences 44: 296–303

    Google Scholar 

  • Cattaneo A., Méthot G., Pinel-Alloul B., Niyonsenga T. and Lapierre L. (1995). Epiphyte size and taxonomy as biological indicators of ecological and toxicological factors in Lake Saint-François (Québec). Environmental Pollution 87: 357–372

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo A., Kerimian T., Roberge M. and Marty J. (1997). Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101–110

    Article  CAS  Google Scholar 

  • Cox E. J. (1991). What is the basis for using diatoms as monitors of river quality?. In: Whitton, B. A., Rott, E. and Freidrich, G. (eds) Use of Algae for Monitoring Rivers, pp 33–40. Institute of Botany, University of Innsbruck, Innsbruck, Austria

    Google Scholar 

  • Dodds W. K., Smith V. H. and Lohman K. (2002). Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Sciences 59: 865–874

    Article  Google Scholar 

  • Fallu, M.-A., N. Allaire & R. Pienitz, 2000. Freshwater diatoms from northern Québec and Labrador (Canada). Species–environment relationships in lakes of boreal forest, forest-tundra and tundra regions. Bibliotheca Diatomologica, Vol. 45. J. Cramer, Berlin/Stuttgart, 200 pp

  • Fallu M.-A., Allaire N. and Pienitz R. (2002). Distribution of freshwater diatoms in 64 Labrador (Canada) lakes: species–environment relationships along latitudinal gradients and reconstruction models for water colour and alkalinity. Canadian Journal of Fisheries and Aquatic Sciences 59: 329–349

    Article  Google Scholar 

  • Francoeur S. N. (2001). Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20: 358–368

    Article  Google Scholar 

  • Ghosh M. and Gaur J. P. (1998). Current velocity and the establishment of stream algal periphyton communities. Aquatic Botany 60: 1–10

    Article  Google Scholar 

  • Gosselain, V., S. Campeau, M. Gevrey, M. Coste, L. Ector, F. Rimet, J. Tison, F. Delmas, Y. S. Park, S. Lek & J.-P. Descy, 2005. Diatom typology of low-impacted conditions at a multi-regional scale: combined results of multivariate analyses and SOM. In Lek, S., M. Scardi, P. F. M. Verdonschot, J. -P. Descy & Y. S. Park (eds), Modelling Community Structure in Freshwater Ecosystems. Springer: 317–342

  • Harding J. H., Young R. G., Hayes J. W., Shearer D. A. and Stark J. D. (1999). Changes in agricultural intensity and river health along a river continuum. Freshwater Biology 42: 345–357

    Article  Google Scholar 

  • Hill W. R. (1996). Effects of light. In: Stevenson, R. J. and Lowe, R. L. (eds) Algal Ecology: Freshwater Benthic Ecosystems , pp 121–148. Academic Press, San Diego

    Google Scholar 

  • Hillebrand H., Dürselen C.-D., Kirschtel D., Pollingher U. and Zohary T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424

    Article  Google Scholar 

  • Jackson D. A. (1995). PROTEST: A PROcrustean Randomization TEST of community environment concordance. Écoscience 2: 297–303

    Google Scholar 

  • Jüttner I., Sharma S., Dahal B. M., Ormerod S. J., Chimonides P. J. and Cox E. J. (2003). Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology 48: 2065–2084

    Article  Google Scholar 

  • Kelly M. G. (1998). Use of community-based indices to monitor eutrophication in rivers. Environmental Conservation 25: 22–29

    Article  CAS  Google Scholar 

  • Kelly M. G. and Whitton B. A. (1995). The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444

    Article  Google Scholar 

  • Kelly M. G., Penny G. J. and Whitton B. A. (1995). Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia 302: 179–188

    CAS  Google Scholar 

  • Krammer, K., 2000. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 1. The genus Pinnularia. A. R. G. Gantner Verlag K. G., Ruggell, 703 pp

  • Krammer, K., 2002. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 3. Cymbella. A. R. G. Gantner Verlag K. G., Ruggell, 584 pp

  • Krammer, K., 2003. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 4. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. A. R. G. Gantner Verlag K. G., Ruggell, 530 pp

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süβwasserflora von Mittleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart/New York, 876 pp

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süβwas- serflora von Mittleuropa, Band 2/2. Gustav Fischer Verlag, Stuttgart/New York, 596 pp

  • Krammer, K., & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süβwasserflora von Mittleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart/Jena, 576 pp

  • Krammer K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süβwasserflora von Mittleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart/New York, 437 pp

  • Lange-Bertalot, H., 2001. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 2. Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia. A. R. G. Gantner Verlag K. G., Ruggell, 526 pp

  • Lavoie I., Vincent W. F., Pienitz R. and Painchaud J. (2004). Benthic algae as a bioindicator of agricultural pollution in lotic ecosystems. Aquatic Ecosystem Health and Management 7: 43–58

    Article  CAS  Google Scholar 

  • Maberly S. C., King L., Dent M. M., Jones R. I. and Gibson C. E. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology 47: 2136–2152

    Article  Google Scholar 

  • McCormick P. V. and Stevenson R. J. (1991). Mechanisms of benthic algal succession in lotic environment. Ecology 72: 1835–1848

    Article  Google Scholar 

  • Mulholland P. J., Marzolf E. R., Hendricks S. P. and Wilkerson R. V. (1995). Longitudinal patterns of nutrient cycling and periphyton characteristics in stream: a test of upstream-downstream linkage. Journal of the North American Benthological Society 14: 357–370

    Article  Google Scholar 

  • Nicholls K. H. and Dillon P. J. (1978). An evaluation of phosphorus–chlorophyll–phytoplankton relationships for lakes. International Revue der Gesamten Hydrobiologie 63: 141–154

    CAS  Google Scholar 

  • Pan Y., Stevenson R. J., Hill B. H., Herlihy A. T. and Collins G. B. (1996). Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. Journal of the North American Benthological Society 15: 481–495

    Article  Google Scholar 

  • Pan Y., Stevenson R. J., Hill B. H. and Herlihy A. T. (2000). Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518–540

    Article  Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press Cambridge, U.K., 329 pp

    Google Scholar 

  • Ponader, K. C., D. F. Charles & T. J. Belton, 2006. Diatom-based TP and TN inference models and indices for biomonitoring nutrient enrichment of New Jersey streams. In press. Ecological Indicators

  • Potapova M. G. and Charles D. F. (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328

    Article  CAS  Google Scholar 

  • Prygiel J. and Coste M. (1993). Utilisation des indices diatomiques pour la mesure de la qualité des eaux du bassin Artois-Picardie: bilan et perspectives. Annales de limnologie 29: 255–267

    Article  Google Scholar 

  • Prygiel, J., B. A. Whitton, J. Bukowska, 1999. Use of Algae for Monitoring Rivers III. Agence de l’Eau Artois-Picardie, France, 271 pp

  • Reavie, E. D. & J. P. Smol, 1998. Freshwater Diatoms from the St. Lawrence River. Bibliotheca Diatomologica, Vol. 41. J. Cramer, Berlin/Stuttgart, 136 pp

  • Rocha O. and Duncan A. (1985). The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. Journal of Plankton Research 7: 279–294

    Google Scholar 

  • Rosemond A. D. (1993). Interactions among irradiance, nutrients and herbivores constrain a stream algal community. Oecologia 94: 585–594

    Article  Google Scholar 

  • Rosemond A. D., Mulholland P. J. and Elwood J. W. (1993). Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74: 1264–1280

    Article  Google Scholar 

  • Rosemond A. D., Mulholland P. J. and Brawley S. H. (2000). Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients and herbivores. Canadian Journal of Fisheries and Aquatic Sciences 57: 66–75

    Article  Google Scholar 

  • Schindler D. W. (1974). Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–899

    Article  CAS  PubMed  Google Scholar 

  • Sicko-Goad L. M., Stoermer E. F. and Ladewski B. G. (1977). A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93: 147–163

    Article  Google Scholar 

  • Smol J. P. and Cumming B. F. (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology 36: 986–1011

    Article  CAS  Google Scholar 

  • Snoeijs P., Busse S. and Potapova M. (2002). The importance of diatom cell size in community analysis. Journal of Phycology 38: 265–272

    Article  Google Scholar 

  • Stelzer R. S. and Lamberti G. A. (2001). Effects of N:P ratio and total nutrient concentration on stream periphyton community structure, biomass and elemental composition. Limnology and Oceanography 46: 356–367

    Article  Google Scholar 

  • Sun J. and Liu D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346

    Article  Google Scholar 

  • Ter Braak C. J. F. and Prentice I. C. (1988). A theory of gradient analysis. Advances in Ecological Research 18: 271–317

    Google Scholar 

  • Ter Braak, C. J. F. & P. Smilauer, 2002. Reference Manual and User’s Guide to CANOCO for Windows (Version 4.5). Center for Biometry, Wageningen, 500 pp

  • Vavilova V. V. and Lewis W. M. (1999). Temporal and altitudinal variations in the attached algae of mountain streams in Colorado. Hydrobiologia 390: 99–106

    Article  Google Scholar 

  • Watson S. and Kalff J. (1981). Relationships between nanoplankton and lake trophic status. Canadian Journal of Fisheries and Aquatic Sciences 38: 960–967

    Article  Google Scholar 

  • Watson S., McCauley E. and Downing J. A. (1992). Sigmoid relationships between phosphorus, algal biomass, and algal community structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 2605–2610

    Article  CAS  Google Scholar 

  • Wellnitz T. A., Rader R. B. and Ward J. V. (1996). Light and a grazing mayfly shape periphyton in a Rocky Mountain stream. Journal of the North American Benthological Society 15: 496–507

    Article  Google Scholar 

  • Winter J. and Duthie H. (2000a). Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19: 32–49

    Article  Google Scholar 

  • Winter J. and Duthie H. (2000b). Stream biomonitoring at an agricultural test site using benthic algae. Canadian Journal of Botany 78: 1319–1325

    Article  Google Scholar 

  • Winter J. and Duthie H. (2000c). Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. Aquatic Ecology 34: 345–353

    Article  Google Scholar 

  • Wunsam S., Cattaneo A. and Bourassa N. (2002). Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshwater Biology 47: 325–340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Campeau.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavoie, I., Campeau, S., Fallu, MA. et al. Diatoms and biomonitoring: should cell size be accounted for?. Hydrobiologia 573, 1–16 (2006). https://doi.org/10.1007/s10750-006-0223-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0223-z

Keywords

Navigation