Skip to main content
Log in

Adaptations of fish species to oxygen depletion in a central Amazonian floodplain lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Pronounced seasonal and daily oxygen concentration changes are characteristic for Amazonian floodplain lakes. Studies on the fish fauna of the Lago Camaleão, Solimões River, Amazonas, Brazil, showed several fish species which are able to survive prolonged periods of heavy hypoxia. Twenty species belonging to eight families were observed in the laboratory in order to determine their respiratory adaptations to hypoxic conditions and oxygen concentrations at which the fish present respiratory adaptations. Finally, the fish species were distributed throughout the habitats of Lake Camaleão according to their adaptation responses. Ten fish species used the surface water for aquatic surface respiration, four species used atmospheric oxygen for aerial respiration, four species used oxygen supplied by the exudation of the roots of floating macrophytes and two exhibited a high tolerance to hypoxic conditions, and well-developed physiological biochemical mechanisms. The fish fauna is well adapted to low oxygen concentrations. The large variety of morpho-anatomical adaptations associated with biochemical and physiological mechanisms to tolerate hypoxic and anoxic conditions enable the 20 fish species to exploit several habitats of Lago Camaleão, such as floating aquatic macrophyte meadows, open water and near the shoreline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Affonso E. G. (2001). Respiratory characteristics of Hoplosternum littorale (Siluriformes, Callichthyidae). Acta Amazonica 31: 249–262

    CAS  Google Scholar 

  • Almeida-Val V. M. F., Val A. L. and Walker I. (1999). Val, L. A. and Almeida-Val, V. M. F. (eds) Biology of Tropical Fishes, pp 185–206. INPA, Manaus

    Google Scholar 

  • Almeida-Val V. M. F., Val A. L., Duncan W. P., Souza F. C. A., Paula-Silva M. N. and Land S. (2000). Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comparative Biochemistry and Physiology – B: Comparative Biochemistry 125B: 219–226

    Article  CAS  Google Scholar 

  • Bicudo J. E. P. W. and Johansen K. (1979). Respiration gas exchange in air breathing fish, Synbranchus marmoratus. Environmental Biology of Fishes 4: 55–64

    Article  Google Scholar 

  • Braum E. and Junk W. J. (1982). Morphological adaptation of two Amazonian characoids (Pisces) for surviving in oxygen deficient waters. Internationale Revue der Gesamten Hydrobiologie 67: 869–886

    Google Scholar 

  • Braum E. and Bock R. (1985). Funktions-morphologische Untersuchungen uber die Barteln von Osteoglossum bicirrhosum (Pisces, Osteoglossidae) wahren der notatmung. Amazoniana 9: 353–370

    Google Scholar 

  • Brauner C. J., Wang T., Wang Y., Richards J. G., Gonzalez R. J., Bernier N. J., Xi W., Patrick M. and Val A. L. (2004). Limited extracellular but complete intracellular acid–base regulation during short-term environmental hypercapnia in the armoured catfish, Liposarcus pardalis. The Journal of Experimental Biology 207: 3381–3390

    Article  PubMed  CAS  Google Scholar 

  • Carter G. S. and Beadle L. C. (1931). The fauna of the swamps of the Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in the fishes. Journal of the Linnean Society of London (Zoology) 37: 327–366

    Article  Google Scholar 

  • Chippari-Gomes A. R., Gomes L. C., Lopes N. P., Val A. L. and Almeida-Val V. M. F. (2005). Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comparative Biochemistry and Physiology, Part B 141: 347–355

    Article  CAS  Google Scholar 

  • Fernandes M. N., Rantin F. T. and Kalinin A. L. (1993). Comparative study of gill dimensions of three erythrinid species in relation to their respiratory function. Canadian Journal of Zoology 72: 160–165

    Article  Google Scholar 

  • Furch, K. & W. J. Junk, 1997. Physicochemical conditions in the floodplains. In Junk, W. J. (ed.), The Central Amazon floodplain: Ecology of a Pulsing System. Springer, Ecological Studies, 126: 69–108

  • Gee J. H. (1976). Buoyancy and aerial respiration: factors influencing the evolution of reduced swimbladder volume of some Central American catfishes (Trichomycteridae, Callichthyidae, Loricariidae, Astroblepidae). Canadian Journal of Zoology 54: 1030–1037

    PubMed  CAS  Google Scholar 

  • Gee J. H. and Graham J. B. (1978). Respiratory and hydrostatic functions of the intestine of the catfishes Hoplosternum thoracatum and Brochis splendens (Callichthyidae). Journal of Experimental Biology 74: 1–16

    PubMed  CAS  Google Scholar 

  • Graham J. B. (1999). Comparative aspects of air-breathing fish biology: an agenda for some Neotropical species. In: Val, L. A. and Almeida-Val, V. M. F. (eds) Biology of Tropical Fishes, pp 317–331. INPA, Manaus

    Google Scholar 

  • Jedicke A., Furch B., Saint-Paul U. and Schlüter U. B. (1989). Increase in the oxygen concentration in Amazon waters resulting from the root exudation of two notorious water plants, Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae). Amazoniana 11: 53–69

    Google Scholar 

  • Jucá-Chagas R. (2004). Air breathing of the Neotropical fishes Lepidosiren paradoxa, Hoplerythrinus unitaeniatus and Hoplosternum littorale during aquatic hypoxia. Comparative Biochemistry and Physiology Part A 139: 49–53

    Article  CAS  Google Scholar 

  • Junk W. J., Soares M. G. M. and Carvalho F. M. (1983). Distribution on fish species in a lake of the Amazon River floodplain near Manaus (Lago Camaleão), with special reference to extreme oxygen conditions. Amazoniana 7: 397–431

    Google Scholar 

  • Junk, W. J., M. G. M. Soares, & U. Saint-Paul, 1997. The fish. In Junk, W. J. (ed.), The Central Amazon Floodplain: Ecology of a Pulsing System. Springer, Ecological Studies, 126: 385–408

  • Kalinin A. L., Rantin F. T., Fernandes M. N. and Glass M. L. (1996). Ventilatory flow relative to intrabuccal and intraopercular volumes in two ecologically distinct erythrinids (Hoplias malabaricus and Hoplias lacerdae) exposed to normoxia and graded hypoxia. In: Val, A. L., Almeida-Val, V. M. F., and Randall, D. J. (eds) Physiological and Biochemistry of the Fishes of the Amazon, pp 191–202. INPA, Manaus

    Google Scholar 

  • Kramer D. L. (1983). Aquatic surface respiration in the fishes of Panama: distribution in relation to risk of hypoxia. Environmental Biology of Fishes 8: 49–54

    Article  Google Scholar 

  • Kramer D. L. and Graham J. B. (1976). Synchronous air breathing a social component of respiration in fishes. Copeia 1976: 689–697

    Article  Google Scholar 

  • Kramer D. L. and McClure M. (1982). Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Environmental Biology of Fishes 7: 47–55

    Article  Google Scholar 

  • (1970). Morphological adaptations of Cyprinodontoid for inhabiting oxygen deficient waters. Copeia 2: 319–326

    Article  Google Scholar 

  • MacCormack T. J., McKinley R. S., Roubach R., Almeida-Val V. M. F., Val A. L. and Driedzic W. R. (2003). Changes in ventilation, metabolism, and behaviour, but not bradycardia, contribute to hypoxia survival in two species of Amazonian armoured catfish. Canadian Journal of Zoology-Revue Canadienne de Zoologie 81: 272–280

    Article  Google Scholar 

  • Moorhead K. K. and Reddy K. R. R. (1988). Oxygen transport through selected aquatic macrophytes. Journal of Environmental Quality 17: 138–142

    Article  Google Scholar 

  • Mount D. L. (1961). Development of a system for controlling dissolved oxygen content of water. Transactions of the American Fisheries Society 90: 323–327

    Article  Google Scholar 

  • Muusze B., Marcon J., Vandenthillart G. and Almeida-Val V. M. F. (1998). Hypoxia tolerance of Amazon fish respirometry and energy metabolism of the cichlid Astronotus ocellatus. Comparative Biochemistry & Physiology 120: 151–156

    Article  Google Scholar 

  • Petry P., Bayley P. B. and Markle D. F. (2003). Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. Journal Fish Biology 63: 547–579

    Article  Google Scholar 

  • Rapp Py-Daniel L. H. (1985). Dekeyseria amazonica, novo gênero e nova espécie na região amazônica, Brasil, e Dekeyseria scaphirhyncha (Kner, 1954) nova combinação (Loricariidae: Siluriformes). Amazoniana 9: 177–191

    Google Scholar 

  • Saint-Paul U. and Soares M. G. M. (1987). Diurnal distribution and behavioral responses of fishes to extreme hypoxia in an Amazon floodplain lake. Environmental Biology of Fishes 20: 91–104

    Article  Google Scholar 

  • Saint-Paul U. and Soares M. G. M. (1988). Ecomorphological adaptation to oxygen deficiency in Amazon floodplains by Serrasalmidae fish of the genus Mylossoma. Journal of Fish Biology 32: 231–236

    Article  Google Scholar 

  • Sánchez-Botero J. I. and Araújo-Lima A. R. M. (2001). As macrófitas aquáticas como berçário para a ictiofauna da várzea do rio Amazonas. Acta Amazonica 31: 437–447

    Google Scholar 

  • Soares M. G. M. and Junk W. J. (2000). Respiratory adaptations of five curimatid species (Teleostei, Curimatidae) to oxygen depletation in an Amazonian floodplain lake. Proceedings of the International Association of Theoretical and Applied Limnology 27: 1063–1069

    Google Scholar 

  • Stevens E. D. and Holeton G. F. (1978). The partitioning of oxygen uptake from air and from water, by the large obligate air-breathing teleost pirarucu (Arapaima gigas). Canadian Journal of Zoology 56: 974–976

    Article  Google Scholar 

  • Sundin L. I., Reid S. G., Kalinin A. L., Rantin F. T. and Milson W. E. (1999). Cardiovascular and respiratory reflexes: the tropical fish, traira (Hoplias malabaricus) O2 chemoresponses. Respiration Physiology 116: 181–199

    Article  PubMed  CAS  Google Scholar 

  • Sundin L. I., Reid S. G., Rantin F. T. and Milsom W. K. (2000). Branchial receptors and cardiorespiratory reflexes in a neotropical fish, the tambaqui (Colossoma macropomum). The Journal of Experimental Biology 203: 1225–1239

    PubMed  CAS  Google Scholar 

  • Val A. L. (1993). Adaptations of fish to extreme conditions in fresh water. In: Bicudo, J. E. (eds) The Vertebrate Gas Transport Cascade: Adaptations to Environment and Mode of Life, pp 43–53. CRC Press, Boca Raton

    Google Scholar 

  • Val A. L. and Almeida-Val V. M. F. (1995). Fishes of the Amazon and Their Environment. Physiological and Biochemical Features. Springer-Verlag, Heidelberg

    Google Scholar 

  • Vanderhorst R. S. D. and Lewis S. D. (1969). Potential of sodium sulfite catalyzed with cobalt chloride in harvesting fish. Progressive Fish Culture 31: 149–154

    CAS  Google Scholar 

  • Winemiller K. O. (1989). Development of dermal lip protuberances for aquatic surface respiration in South American characid fishes. Copeia 2: 382–390

    Article  Google Scholar 

  • Zar J. H. (1999). Biostatitical Analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. M. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, M.G.M., Menezes, N.A. & Junk, W.J. Adaptations of fish species to oxygen depletion in a central Amazonian floodplain lake. Hydrobiologia 568, 353–367 (2006). https://doi.org/10.1007/s10750-006-0207-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0207-z

Keywords

Navigation