Skip to main content
Log in

Speciation and Selection without Sex

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

More than 100 females of the obligately asexual bdelloid rotifers were isolated from nature and their mitochondrial cox1 genes (encoding cytochrome oxidase subunit 1) were sequenced. Phylogenetic analysis of the sequences showed that most of the isolates fall into 21 clades that show two characteristics of species: they are reciprocally monophyletic and have sequence diversities similar to that of species in other organisms. These clades have been evolving independently in spite of being effectively sympatric, indicating that they are adapted to different ecological niches. In support of this, at least some of the clades differ in morphology, food utilization, and temperature tolerance. We conclude that the bdelloid rotifers have undergone substantial speciation in the absence of sexual reproduction. We also used these sequences to test the prediction that asexual organisms should be subject to relaxed natural selection and hence will accumulate detrimental mutations. In contrast to this prediction, several estimates of the ratio Ka/Ks for the cox1 gene showed that this gene is subject to strong selection in the bdelloid rotifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. C. Avise (1994) Molecular Markers, Natural History and Evolution Chapman & Hall, Inc. New York

    Google Scholar 

  • J. C. Avise R. M. Ball SuffixJr. (1990) Principles of genealogical concordance in species concepts and biological taxonomy D. Futuyama J. Antonovics (Eds) Oxford Surveys in Evolutionary Biology Oxford University Press Oxford 45–67

    Google Scholar 

  • T. G. Barraclough C. W. Birky SuffixJr. A. Burt (2003) ArticleTitleDiversification in sexual and asexual organisms Evolution 57 2166–2172 Occurrence Handle14575336

    PubMed  Google Scholar 

  • N. H. Barton B. Charlesworth (1998) ArticleTitleWhy sex and recombination? Science 281 1987–1990 Occurrence Handle10.1126/science.281.5385.1986

    Article  Google Scholar 

  • G. Bell (1982) The Masterpiece of Nature Croom Helm London

    Google Scholar 

  • Birky, C. W. Jr., 1996. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proceedings of the National Academy of Sciences of the United States of America 92: 11331–11338

  • Birky, C. W. Jr. & J. B. Walsh, 1988. Effects of linkage on rates of molecular evolution. Proceedings of the National Academy of Sciences of the United States of America 85: 6414–6418

    Google Scholar 

  • C. W. Birky T. Maruyama P. Fuerst (1983) ArticleTitleAn approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts and some results Genetics 103 513–527 Occurrence Handle6840539

    PubMed  Google Scholar 

  • A. J. Bohonak (2002) ArticleTitleIBD (Isolation By Distance): a program for analysis of isolation by distance Journal of Heredity 93 153–154 Occurrence Handle10.1093/jhered/93.2.153 Occurrence Handle12140277

    Article  PubMed  Google Scholar 

  • C. E. Cáceres D. A. Soluk (2002) ArticleTitleBlowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates Oecologia 131 402–408 Occurrence Handle10.1007/s00442-002-0897-5

    Article  Google Scholar 

  • A. M. Derry P. D. N. Hebert E. E. Prepas (2003) ArticleTitleEvolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach Limnology and Oceanography 48 675–685

    Google Scholar 

  • J. Donner (1965) Ordnung Bdelloidea Akademie Verlag Berlin 297

    Google Scholar 

  • D. J. Funk (1999) ArticleTitleMolecular systematics of cytochrome oxidase I and 16S from Neochlamisus leaf beetles and the importance of sampling Molecular Biology and Evolution 16 67–82 Occurrence Handle10331253

    PubMed  Google Scholar 

  • W. Gabriel M. Lynch R. Bürger (1993) ArticleTitleMuller’s ratchet and mutational meltdown Evolution 47 1744–1757

    Google Scholar 

  • Gilbert, D. G., 1992. SeqApp, a biological sequence editor and analysis program for Macintosh computers. Published electronically on the Internet, available via gopher or anonymous ftp to ftp.biol.indiana.edu

  • G. Giribet G. D. Edgecombe W. C. Wheeler (2001) ArticleTitleArthropod phylogeny based on eight molecular loci and morphology Nature 413 157–161 Occurrence Handle10.1038/35093097 Occurrence Handle11557979

    Article  PubMed  Google Scholar 

  • N. Goldman Z. Yang (1994) ArticleTitleA codon-based model of nucleotide substitution for protein-coding DNA sequences Molecular Biology and Evolution 11 725–736 Occurrence Handle7968486

    PubMed  Google Scholar 

  • A. Gómez (2005) ArticleTitleMolecular ecology of rotifers: from population differentiation to speciation Hydrobiologia 546 83–99

    Google Scholar 

  • Gómez A., G. R. Carvalho & D. H. Lunt, 2000. Phylogeography and regional endemism of a passively dispersing zooplankter: mitochondrial DNA variation in rotifer resting egg banks. Proceedings of the Royal Society of London. Series B, Biological Sciences 267: 2189–2197

    Google Scholar 

  • J. L. I. Hartman B. Garvik L. Hartwell (2001) ArticleTitlePrinciples for the buffering of genetic variation Science 291 1001–1004 Occurrence Handle10.1126/science.291.5506.1001 Occurrence Handle11232561

    Article  PubMed  Google Scholar 

  • Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. deWaard, 2003. Biological identification through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences 270: 313–321

  • W. G. Hill A. Robertson (1966) ArticleTitleThe effect of linkage on limits to artificial selection Genetical Research 38 226–231

    Google Scholar 

  • W. Hoeh M. Black R. Gustafson A. Bogan R. Lutz R. Vrijenhoek (1998) ArticleTitleTesting alternative hypotheses of Neotrigonia (Bivalvia:Trigonioida) relationships using cytochrome C oxidase subunit I DNA sequences Malacalogia 40 267–278

    Google Scholar 

  • E. W. Holman (1987) ArticleTitleRecognizability of sexual and asexual species of rotifers Systematic Zoology 36 381–386

    Google Scholar 

  • R. R. Hudson J. A. Coyne (2002) ArticleTitleMathematical consequences of the genealogical species concept Evolution 56 1557–1565 Occurrence Handle12353748

    PubMed  Google Scholar 

  • A. S. Kondrashov (1993) ArticleTitleClassification of hypotheses on the advantage of amphimixis Journal of Heredity 84 372–387 Occurrence Handle8409359

    PubMed  Google Scholar 

  • M. Lynch J. L. Blanchard (1998) ArticleTitleDeleterious mutation accumulation in organelle genomes Genetica 102/103 29–39 Occurrence Handle10.1023/A:1017022522486

    Article  Google Scholar 

  • Mark Welch, D. B. & M. Meselson, 2001. Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proceedings of the National Academy of Sciences of the United States of America 98: 6720–6724

  • T. Maruyama C. W. Birky SuffixJr. (1991) ArticleTitleEffects of periodic selection on gene diversity in organelle genomes and other systems without recombination Genetics 127 449–451 Occurrence Handle2004715

    PubMed  Google Scholar 

  • E. N. Moriyama J. R. Powell (1996) ArticleTitleIntraspecific nuclear DNA variation in Drosophila Molecular Biology and Evolution 13 261–277 Occurrence Handle8583899

    PubMed  Google Scholar 

  • M. Nei T. Gojobori (1986) ArticleTitleSimple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions Molecular Biology and Evolution 3 418–426 Occurrence Handle3444411

    PubMed  Google Scholar 

  • R. Nielsen Z. Yang (1998) ArticleTitleLikelihood models for detecting positively selected amino acid sites and applications to the HIV–1 envelope gene Genetics 148 929–936 Occurrence Handle9539414

    PubMed  Google Scholar 

  • D. Posada K. A. Crandall (1998) ArticleTitleMODELTEST: testing the model of DNA substitution Bioinformatics 14 817–818 Occurrence Handle10.1093/bioinformatics/14.9.817 Occurrence Handle9918953

    Article  PubMed  Google Scholar 

  • C. Ricci (1984) ArticleTitleCulturing of some bdelloid rotifers Hydrobiologia 112 45–51 Occurrence Handle10.1007/BF00007665

    Article  Google Scholar 

  • C. Ricci (1991) ArticleTitleComparison of five strains of a parthenogenetic species, Macrotrachela quadricornifera (Rotifera, Bdelloidea) Hydrobiologia 211 147–155 Occurrence Handle10.1007/BF00037370

    Article  Google Scholar 

  • D. Ronneberger (1998) ArticleTitleUptake of latex beads as size-model for food of planktonic rotifers Hydrobiologia 387/388 445–449 Occurrence Handle10.1023/A:1017046711821

    Article  Google Scholar 

  • N. A. Rosenberg (2003) ArticleTitleThe shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model Evolution 57 1465–1477 Occurrence Handle12940352

    PubMed  Google Scholar 

  • S. L. Rutherford (2000) ArticleTitleFrom genotype to phenotype: buffering mechanisms and the storage of genetic information BioEssays 22 1095–1105 Occurrence Handle10.1002/1521-1878(200012)22:12<1095::AID-BIES7>3.0.CO;2-A Occurrence Handle11084625

    Article  PubMed  Google Scholar 

  • H. Segers (2002) ArticleTitleThe nomenclature of the Rotifera: annotated checklist of valid family- and genus-group names Journal of Natural History 36 631–640 Occurrence Handle10.1080/002229302317339707

    Article  Google Scholar 

  • Swofford, D. L., 1998. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

  • O. Vadstein G. Oie Y. Olsen (1993) ArticleTitleParticle size dependent feeding by the rotifer Brachionus plicatilis Hydrobiologia 255/256 261–267 Occurrence Handle10.1007/BF00025861

    Article  Google Scholar 

  • Z. Yang (1994) ArticleTitleMaximum likelihood estimation from DNA sequences with variable rates over sites: approximate methods Journal of Molecular Evolution 39 306–314 Occurrence Handle10.1007/BF00160154 Occurrence Handle7932792

    Article  PubMed  Google Scholar 

  • Z. Yang (2000) Phylogenetic Analysis by Maximum Likelihood (PAML) University College London London, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. William Birky Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birky, C.W., Wolf, C., Maughan, H. et al. Speciation and Selection without Sex. Hydrobiologia 546, 29–45 (2005). https://doi.org/10.1007/s10750-005-4097-2

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-005-4097-2

Keywords

Navigation