Skip to main content

Advertisement

Log in

Development and Application of a Predictive Model of Freshwater Fish Assemblage Composition to Evaluate River Health in Eastern Australia

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allan J. D., Erikson D. L. and Fay J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37: 149–161

    Article  Google Scholar 

  • Angermeier P. L. and Schlosser I. J. (1989). Species-area relationships for stream fishes. Ecology 70: 1450–1462

    Article  Google Scholar 

  • Angermeier P. L. and Winston M. A. (1998). Local vs regional influences on local diversity in stream fish communities of Virginia. Ecology 79: 911–927

    Article  Google Scholar 

  • ANZECC & ARMCANZ, 2000. Australian and New Zealand Water Quality Guidelines. Australia and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra

  • Bailey R. C., Norris R. H. and Reynoldson T. B. (2004). Bioasseessment of Freshwater Ecosystems Using the Reference Condition Approach. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Barmuta L. A., Emmerson L. and Otahal P. (2003). AusRivAS Errors Analysis – Final Report for AusRivAs Toolbox Project TB1. National River Health Program & Land and Water Australia, Canberra

    Google Scholar 

  • Belbin L. (1995). PATN – Pattern Analysis Package. CSIRO Division of Wildlife and Rangelands Research, Canberra

    Google Scholar 

  • Boulton A. J., Peterson C. G., Grimm N. B. and Fisher S. G. F. (1992). Stability of an aquatic macroinvertebrate community in a multi-year hydrologic disturbance regime. Ecology 73: 2192–2207

    Article  Google Scholar 

  • Bray J. R. and Curtis J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349

    Article  Google Scholar 

  • Bunn S. E. (1995). Biological monitoring of water quality in Australia: Workshop summary and future directions. Australian Journal of Ecology 20: 220–227

    Article  Google Scholar 

  • Cao Y. and Williams D. D. (1999). Rare species are important for bioassessment – reply to Marchant’s comments. Limnology and Oceanography 43: 1841–1842

    Google Scholar 

  • Cao Y., Williams D. D. and Williams N. E. (1998). How important are rare species in aquatic community ecology and bioassessment?. Limnology and Oceanography 43: 1403–1409

    Article  Google Scholar 

  • Cao Y., Larsen D. P. and Thorne R. St-J. (2001). Rare species in multivariate analysis for bioassessment: some considerations. Journal of the North American Benthological Society 20: 144–153

    Article  Google Scholar 

  • Chessman B., Growns I., Currey J. and Plunkett-Cole N. (1999). Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Biology 41: 317–331

    Article  Google Scholar 

  • Clarke R. T., Furse M. T., Wright J. F. and Moss D. (1996). Derivation of a biological quality index for river sites: comparison of the observed with the expected fauna. Journal of Applied Statistics 23: 311–332

    Article  Google Scholar 

  • Clarke R. T., Furse M. T., Gunn R. J. M., Winder J. M. and Wright D. (2002). Sampling variation in macroinvertebrate data and implications for river quality indices. Freshwater Biology 47: 1735–1751

    Article  Google Scholar 

  • Cottingham K. L., Brown B. L. and Lennon J. T. (2001). Biodiversity may regulate the temporal variability of ecological systems. Ecology Letters 4: 72–85

    Article  Google Scholar 

  • Davies P. E. (2000). Development of a national river bioassessment system (AUSRIVAS) in Australia. In: Wright, J. F., Sutcliffe, D. W. and Furse, M. T. (eds) Assessing the Biological Quality of Freshwaters: RIVPACS and Other Techniques, pp 113–124. Freshwater Biological Association and Environment Agency, UK

    Google Scholar 

  • Davies N. M., Norris R. H. and Thoms M. C. (2000). Prediction and assessment of local stream habitat features using large-scale catchment characteristics. Freshwater Biology 45: 343–369

    Article  Google Scholar 

  • Faith D. P., Minchin P. R. and Belbin L. (1987). Compositional dissimilarity as a robust measure of ecological distance: a theoretical model and computer simulations. Vegetatio 69: 57–68

    Article  Google Scholar 

  • Fausch K. D., Lyons J., Karr J. R. and Angermeier P. L. (1990). Fish communities as indicators of environmental degradation. American Fisheries Society Symposium 8: 123–144

    Google Scholar 

  • Fore L. S., Karr J. R. and Wisseman R. W. (1996). Assessing invertebrate responses to human activities: evaluating alternative approaches. Journal of the North American Benthological Society 15: 212–231

    Article  Google Scholar 

  • Furse M. T., Moss D., Wright J. F. and Atmitage P. D. (1982). The influence of seasonal and taxonomic factors on the ordination and classification of running-water sites in Great Britain and on the prediction of their macro-invertebrate communities. Freshwater Biology 14: 257–280

    Article  Google Scholar 

  • Gerritsen J. (1995). Additive biological indices for resource management. Journal of the North American Benthological Society 14: 451–457

    Article  Google Scholar 

  • Grossman G. D., Dowd J. F. and Crawford M. (1991). Assemblage stability in stream fishes: a review. Environmental Management 14: 661–671

    Article  Google Scholar 

  • Harris J. H. (1995). The use of fish in ecological assessments. Australian Journal of Ecology 20: 65–80

    Article  Google Scholar 

  • Harris J. H. and Silveira R. (1999). Large-scale assessments of river health using an Index of biotic integrity with low-diversity fish communities. Freshwater Biology 41: 235–252

    Article  Google Scholar 

  • Hawkins C. P., Norris R. H., Hogue J. N. and Feminella J. W. (2000). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10: 1456–1477

    Article  Google Scholar 

  • Hughes R. M. (1995). Defining acceptable biological status by comparing with reference conditions. In: Davis, W. S. and Simon, T. P. (eds) Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making, pp 31–48. Lewis, Boca Raton, FL

    Google Scholar 

  • Hughes R. M. and Oberdorff T. (1999). Applications of IBI concepts and metrics to waters outside the United States and Canada. In: Simon, T. P. (eds) Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities, pp 79–83. CRC Press, Boca Raton, FL

    Google Scholar 

  • Humphrey C. L., Storey A. W. and Thurtell L. (2000). AUSRIVAS: operator sample processing errors and temporal variability – implications for model sensitivity. In: Wright, J. F., Sutcliffe, D. W., and Furse, M. T. (eds) Assessing the Biological Quality of Freshwaters: RIVPACS and Other Techniques, pp 143–163. Freshwater Biological Association and Environment Agency, UK

    Google Scholar 

  • Jackson D. A. and Harvey H. H. (1989). Biogeographic associations in fish assemblages: local vs regional processes. Ecology 70: 1472–1484

    Article  Google Scholar 

  • Johnson R. K. (2000). RIVPACS and alternative statistical modelling techniques: accuracy and soundness of principles. In: Wright, J. F., Sutcliffe, D. W. and Furse, M. T. (eds) Assessing the Biological Quality of Freshwaters: RIVPACS and Other Techniques, pp 323–332. Freshwater Biological Association and Environment Agency, UK

    Google Scholar 

  • Joy M. K. and Death R. G. (2000). Development and application of a predictive model of riverine fish community assemblages in the Taranaki region of the North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 34: 241–252

    Article  Google Scholar 

  • Joy M. K. and Death R. G. (2002). Predictive modelling of freshwater fish as a biomonitoring tool in New Zealand. Freshwater Biology 47: 2261–2275

    Article  Google Scholar 

  • Joy M. K. and Death R. G. (2003). Assessing biological integrity using freshwater fish and decapod habitat selection functions. Environmental Management 32: 747–459

    Article  PubMed  Google Scholar 

  • Karr J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries 6: 21–27

    Article  Google Scholar 

  • Karr J. R. and Chu E. W. (1999). Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, D.C

    Google Scholar 

  • Karr J. R., Yant P. R. and Fausch K. D. (1987). Spatial and temporal variability of the index of biotic integrity in three midwestern streams. Transactions of the American Fisheries Society 116: 1–11

    Article  Google Scholar 

  • Karr J. R., Fausch K D., Angermeier P. L., Yant P. R. and Schlosser I. J. (1986). Assessing Biological Integrity in Running Waters: A Method and its Rationale. Illinois Natural History Survey Special Publication, Champaign

    Google Scholar 

  • Kennard M. J., Arthington A. H., Pusey B. J. and Harch B. D. (2005). Are alien fish a reliable indicator of river health?. Freshwater Biology 50: 174–193

    Article  Google Scholar 

  • Lake P. S. (1995). Of floods and droughts: river and stream ecosystems of Australia. In: Cushing, C. E., Cummins, K. W. and Minshall, G. W. (eds) Ecosystems of the World 22: River and Stream Ecosystems, pp 659–694. Elsevier, New York

    Google Scholar 

  • Linke S., Bailey R. C. and Schwindt J. (1999). Temporal variability of stream bioassessments using benthic macroinvertebrates. Freshwater Biology 42: 575–584

    Article  Google Scholar 

  • McMahon T. A. (1986). Hydrology and management of Australian streams. In: Campbell, I. C. (eds) Stream Protection – The Management of Rivers for In-stream Uses, pp 23–44. Water Studies Centre, Chisholm Institute, Melbourne

    Google Scholar 

  • Marchant R. A., Hirst R. H., Norris R., Butcher L., Metzeling L. and Tiller D. (1997). Classification and prediction of macroinvertebrate assemblages from running waters in Victoria, Australia. Journal of the North American Benthological Society 16: 664–681

    Article  Google Scholar 

  • Meffe G. K. and Minckley W. L. (1987). Persistence and stability of fish and invertebrate assemblages in a repeatedly disturbed Sonoran desert stream. American Midland Naturalist 117: 177–191

    Article  Google Scholar 

  • Metzeling L., Robinson D., Perriss S. and Marchant R. (2002). Temporal persistence of benthic macroinvertebrate communities in south-eastern Australian streams: taxonomic resolution and implications for the use of predictive models. Marine and Freshwater Research 53: 1223–1234

    Article  Google Scholar 

  • Meyer J. L., Sale M. J., Mulholland P. J. and Poff N. L. (1999). Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association 35: 1373–1386

    Google Scholar 

  • Micheli F., Cottingham K., Bascompte J., Bjornstad O., Eckert J., Fischer J., Keitt T., Kendall B. and Klug J. (1999). The dual nature of community variability. Oikos 85: 161–169

    Google Scholar 

  • Mingelbier M., Lecomte F. and Dodson J. J. (2001). Climate change and abundance cycles of two sympatric populations of smelt (Osmerus mordax) in the middle estuary of the St Lawrence River, Canada. Canadian Journal of Fisheries and Aquatic Sciences 58: 2048–2058

    Article  Google Scholar 

  • Mol J. H., Resida D., Ramlal J. S. and Becker C. R. (2000). Effects of the El-Nino-related drought on freshwater and brackish-water fishes in Suriname, South America. Environmental Biology of Fishes 59: 429–440

    Article  Google Scholar 

  • Moss D., Furse M. T., Wright J. F. and Armitage P. D. (1987). The prediction of the macro-invertebrate fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwater Biology 17: 41–52

    Article  Google Scholar 

  • Murray Darling Basin Commission, 2004. Fish Theme Pilot Audit Technical Report – Sustainable Rivers Audit. MDBC Publication 06/04

  • Newbury R. W. and Gaboury M. C. (1993). Stream Analysis and Fish Habitat Design: A Field Manual. Newbury Hydraulics Ltd, Gibson

    Google Scholar 

  • Norris R. H. (1995). Biological monitoring: the dilemma of data analysis. Journal of the North American Benthological Society 14: 440–450

    Article  Google Scholar 

  • Norris, R. H., I. Prosser, B. Young, P. Liston, N. Bauer, N. Davies, F. Dyer, S. Linke & M. Thoms, 2001. The assessment of River Conditions (ARC): an audit of the ecological condition of Australian rivers. http://www.nlwra.gov.au/

  • Oberdorff T., Hugueny B. and Vigeron T. (2001a). Is assemblage variability related to environmental variability? An answer for riverine fish. Oikos 93: 419–428

    Article  Google Scholar 

  • Oberdorff T., Pont D., Hugueny B. and Chessel D. (2001b). A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology 46: 399–415

    Article  Google Scholar 

  • Paller M. H. (2002). Temporal variability in fish assemblages from disturbed and undisturbed streams. Journal of Aquatic Ecosystem Stress and Recovery 9: 149–158

    Article  Google Scholar 

  • Parsons M. and Norris R. H. (1996). The effects of habitat-specific sampling on biological assessment of water quality using a predictive model. Freshwater Biology 36: 419–434

    Article  Google Scholar 

  • Poff N. L. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409

    Article  Google Scholar 

  • Puckridge J. T., Walker K. F. and Costelloe J. F. (2000). Hydrological persistence and the ecology of dryland rivers. Regulated Rivers Research and Management 16: 385–402

    Article  Google Scholar 

  • Puckridge J. T., Sheldon F., Walker K. F. and Boulton A. J. (1998). Flow variability and the ecology of large rivers. Marine and Freshwater Research 49: 55–72

    Article  Google Scholar 

  • Pusey B. J., Arthington A. H. and Read M. G. (1993). Spatial and temporal variation in fish assemblage structure in the Mary River, south-eastern Queensland: the influence of habitat structure. Environmental Biology of Fishes 37: 355–380

    Article  Google Scholar 

  • Pusey B. J., Kennard M. J. and Arthington A. H. (2000). Discharge variability and the development of predictive models relating stream fish assemblage structure to habitat in north-eastern Australia. Ecology of Freshwater Fish 9: 30–50

    Article  Google Scholar 

  • Pusey B. J., Kennard M. J. and Arthington A. H. (2004). Freshwater Fishes of North-Eastern Australia. CSIRO Publishing, Melbourne

    Google Scholar 

  • Pusey B. J., Kennard M. J., Arthur J. M. and Arthington A. H. (1998). Quantitative sampling of stream fish assemblages: single- versus multiple pass electrofishing. Australian Journal of Ecology 23: 365–374

    Article  Google Scholar 

  • Quinn G. P. and Keough M. J. (2002). Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Reece P. F., Reynoldson T. B., Richardson J. S. and Rosenberg D. M. (2001). Implications of seasonal variation for biomonitoring with predictive models in the Fraser River catchment, British Colombia. Canadian Journal of Fisheries and Aquatic Sciences 58: 1411–1418

    Article  Google Scholar 

  • Reynoldson T. B., Rosenberg D. M. and Resh V. H. (2001). Comparison of models predicting invertebrate assemblages for biomonitoring in the Fraser River catchment, British Colombia. Canadian Journal of Fisheries and Aquatic Sciences 58: 1395–1410

    Article  CAS  Google Scholar 

  • Reynoldson T. B., Norris R. H., Resh V. H. and Day K. E. (1997). The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society 16: 833–852

    Article  Google Scholar 

  • Robinson C. T., Minshall G. W. and Royer T. V. (2000). Inter-annual patterns in macroinvertebrate communities of wilderness streams in Idaho, USA. Hydrobiologia 421: 187–198

    Article  Google Scholar 

  • Roth N. E., Allan J. D. and Erikson D. E. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156

    Article  Google Scholar 

  • (1988). SAS/STAT User’s Guide, Release 6.30 Edition. SAS Institute Inc, Cary, NC

    Google Scholar 

  • Scarsbrook M. R. (2002). Persistence and stability of lotic macroinvertebrate communities in New Zealand. Freshwater Biology 47: 417–431

    Article  Google Scholar 

  • Schlosser I. J. (1990). Environmental variation, life history attributes and community structure in stream fishes: implications for environmental management and assessment. Environmental Management 14: 621–628

    Article  Google Scholar 

  • Schlosser I. J. (1991). Stream fish ecology: a landscape perspective. BioScience 41: 704–712

    Article  Google Scholar 

  • Schlosser I. J. (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia 303: 71–81

    Google Scholar 

  • Schlosser I. J. and Angermeier P. L. (1995). Spatial variation in demographic processes of lotic fishes: conceptual models, empirical evidence and implications for conservation. American Fisheries Society Symposium 17: 392–401

    Google Scholar 

  • (1999). Assessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. CRC Press, New York

    Google Scholar 

  • (2003). Biological Response Signatures: Indicator Patterns Using Aquatic Communities. CRC Press, Boca Raton

    Google Scholar 

  • Simpson J. and Norris R. H. (2000). Biological assessment of water quality: development of AUSRIVAS models and outputs. In: Wright, J. F., Sutcliffe, D. W. and Furse , M. T. (eds) Assessing the Biological Quality of Freshwaters: RIVPACS and Other Techniques, pp 125–142. Freshwater Biological Association and Environment Agency, UK

    Google Scholar 

  • (2001). Design and Implementation of Baseline Monitoring (DIBM3): Developing an Ecosystem Health Monitoring Program for Rivers and Streams in Southeast Queensland. Report to the South-East Queensland Regional Water Quality Management Strategy, Brisbane, 416

    Google Scholar 

  • Smith M. J., Kay W. R., Edwards D. H. D., Papas P. J., Simpson J. C., Pinder A. M, Cale D. J., Horwitz P. H. J., Davis J. A., Yung F. H. and Norris R. H. (1999). AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology 41: 269–282

    Article  Google Scholar 

  • (1999). S-PLUS, version 2000 for Windows. Mathsoft Inc, Seattle, WA

    Google Scholar 

  • Stauffer J. C., Goldstein R. M. and Newman R. M. (2000). Relationship of wooded riparian zones and runoff potential to fish community composition in agricultural streams. Canadian Journal of Fisheries and Aquatic Sciences 57: 307–316

    Article  Google Scholar 

  • Tabachnik B. G. and Fidell L. S. (1989). Using Multivariate Statistics . Harper Collins Publishers, New York

    Google Scholar 

  • Taylor C. M., Winston M. R. and Matthews W. J. (1996). Temporal variation in tributary and mainstem fish assemblages in a Great Plains stream system. Copeia 1996: 280–289

    Article  Google Scholar 

  • Townsend C. R. and Riley R. H. (1999). Assessment of river health: accounting for perturbation pathways in physical and ecological space. Freshwater Biology 41: 393–405

    Article  Google Scholar 

  • Turak E., Flack L. K., Norris R. H., Simpson J. and Waddell N. (1999). Assessment of river condition at a large spatial scale using predictive models. Freshwater Biology 41: 283–298

    Article  Google Scholar 

  • Unmack P. J. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography 28: 1053–1089

    Article  Google Scholar 

  • Williams L. R., Taylor C. M., Warren M. L. and Clingenpeel J. A. (2003). Environmental variability, historical contingency, and the structure of regional fish and macroinvertebrate faunas in Ouachita Mountain stream systems. Environmental Biology of Fishes 67: 203–216

    Article  Google Scholar 

  • Wright J. F. (1995). Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20: 181–197

    Article  Google Scholar 

  • Wright J. F., Moss D., Armitage P. D. and Furse M. T. (1984). A preliminary classification of running water sites in Great Britain based on macroinvertebrate species and the prediction of community type using environmental data. Freshwater Biology 14: 221–256

    Article  Google Scholar 

  • Zar J. H. (1996). Biostatistical Analysis . Prentice-Hall International, Inc., New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Kennard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennard, M.J., Pusey, B.J., Arthington, A.H. et al. Development and Application of a Predictive Model of Freshwater Fish Assemblage Composition to Evaluate River Health in Eastern Australia. Hydrobiologia 572, 33–57 (2006). https://doi.org/10.1007/s10750-005-0993-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-005-0993-8

Keywords

Navigation