Skip to main content
Log in

Assessment of Heart Autonomic Control on the Basis of Spectral Analysis of Heart Rate Variability

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

An orthostatic test with frequency-controlled breathing (with a respiration period of 10 s) or spontaneous breathing was used to analyze frequency estimates of the heart rate variability (HRV) in the low-frequency (LF) and high-frequency (HF) ranges in young men and women. It was demonstrated that the spectral components of HRV bear no signs of sex differentiation, suggesting a uniform structural organization of the system of autonomic nervous control of the heart (SANCH) in humans. The LF component of the HRV spectrum is a marker of the functional state of the SANCH; it should be studied under conditions of controlled breathing at a frequency of 0.1 Hz. The HF and LF components of the HRV characterize the state of the SANCH at a given moment and do not reflect directly its adaptation reserve. The HF component of the HRV is interesting as a parameter that may be used for estimating the changes in the adaptation reserve of heart autonomic control. It is preferable to analyze this component in the absence of external disturbances in the LF range of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akselrod, S., Gordon, D., Madwed, J.B., et al., Hemodynamic Regulation Investigation by Spectral Analysis, Am. J. Physiol., 1985, vol. 249, p. 867.

    Google Scholar 

  2. Saul, J.P., Rea, R.F., Eckbery, D.L., et al., Heart Rate and Muscle Sympathetic Nerve Variability during Reflex Changes of Autonomic Activity, Am. J. Physiol., 1990, vol. 258, p. 713.

    Google Scholar 

  3. Malliani, A., Pagani, M., Lombardi, F., and Cerutti, S., Cardiovascular Neural Regulation Explored in the Frequency Domain. Research Advances Series, Circulation, 1991, vol. 84, p. 482.

    PubMed  CAS  ISI  Google Scholar 

  4. Ringwood, J.V. and Malpas, S.C., Slow Oscillations in Blood Pressure via a Nonlinear Feedback Model, Am. J. Physiol. Reg. Integr. Comp. Physiol., 2001, vol. 280, no.4, p. 1105.

    Google Scholar 

  5. De Boer, R.W., Karemuker, J.M., and Stracker, J., On the Spectral Analysis of Blood Pressure Variability, Am. J. Physiol., 1986, vol. 251, no.3, part 2, p. 685.

    Google Scholar 

  6. De Boer, R.W., Karemuker, J.M., and Stracker, J., Relationships between Short-Term Blood Pressure Fluctuations and Heart Variability in Resting Subjects: I. A Spectral Analysis Approach, Med. Biol. Eng. Comput., 1985, vol. 23, no.4, p. 352.

    PubMed  Google Scholar 

  7. De Boer, R.W., Karemuker, J.M., and Stracker, J., Relationships between Short-Term Blood Pressure Fluctuations and Heart Variability in Resting Subjects: II. A Simple Model, Med. Biol. Eng. Comput., 1985, vol. 23, no.4, p. 359.

    PubMed  Google Scholar 

  8. De Boer, R.W., Karemuker, J.M., and Stracker, J., Hemodynamic Fluctuations and Baroreflex Sensitivity in Humans: A Beat-to-Beat Model, Am. J. Physiol., 1987, vol. 253, no.3, p. 680.

    Google Scholar 

  9. Madwed, J.B., Albrecht, P., Mark, R.G., and Cohen, R.J., Low-Frequency Oscillation in Arterial Pressure and Heart Rate: A Simple Computer Model, Am. J. Physiol., 1989, vol. 256, no.6, p. 1573.

    Google Scholar 

  10. Pagani, M. and Malliani, A., Interpreting Oscillations of Muscle Sympathetic Nerve Activity and Heart Rate Variability, J. Hypertension, 2000, vol. 18, no 12, p. 1709.

    Google Scholar 

  11. Sleight, P., La Rovere, M.T., Mortara A., et al., Physiology and Pathophysiology of Heart Rate Variability in Humans: Is Power Spectral Analysis Largely an Index of Baroreflex Gain?, Clin. Sci., 1995, vol. 88, no 1, p. 103.

    Google Scholar 

  12. Richter, D.W. and Spyer, K.M., Cardiorespiratory Control, in Central Regulation of Autonomic Function, New York: Oxford Univ. Press, 1990, p. 189.

    Google Scholar 

  13. Cevese, A., Grasso, R., Poltronieri, R., and Schena, F., Vascular Resistance and Arterial Pressure Low-Frequency Oscillations in the Anesthetized Dog, Am. J. Physiol., 1995, vol. 268, no.1, p. 7.

    Google Scholar 

  14. Whittam, A.M., Claytont, R.H., Lord, S.W., et al., Heart Rate and Blood Pressure Variability in Normal Subjects Compared with Data from Beat-to-Beat Models Developed from de Boer's Model of the Cardiovascular System, Physiol. Meas., 2000, vol. 21, no 2, p. 305.

    Google Scholar 

  15. Bernardi, L., Passino, C., Spadacini, G., et al., Arterial Baroreceptors As Determinants of 0.1 Hz and Respiration-Related Changes in Blood Pressure and Heart Rate Spectra, in Frontiers of Blood Pressure and Heart Rate Analysis, Amsterdam: IOS, 1997, p. 241.

    Google Scholar 

  16. Nakao, N., Norimatsu, M., Mizutani, Y., and Yamamoto, M., Spectral Distortion Properties of the Integral Pulse, IEEE Trans. Biomed. Eng., 1997, vol. 44, no 5, p. 419.

    Google Scholar 

  17. Stanley, G.B., Poolla, K., and Siegel, R.A., Threshold Modeling of Autonomic Control of Heart Rate Variability, J. Trans. Biomed. Eng., 2000, vol. 47, no 9, p. 1147.

    Google Scholar 

  18. Radhakrishna, K.K.A., Dutt, D.N., and Yeragani, V.K., Nonlinear Measures of Heart Rate Time Series: Influence of Posture and Controlled Breathing, Auton. Neurosci. Bas. Clin., 2000, vol. 83, no.3, p. 148.

    CAS  Google Scholar 

  19. Patwardhan, A., Evans, J., Bruce, E., and Knapp, C. Heart Rate Variability during Sympatho-Excitatory Challenges: Comparison between Spontaneous and Metronomic Breathing, Integr. Physiol. Behav. Sci., 2001, vol. 36, no.2, p. 109.

    PubMed  CAS  Google Scholar 

  20. Malpas, S.C., Hore, T.A., Navakatikyan, M., et al., Resonance in Renal Vasculature Evoked by Activation of the Sympathetic Nerves, Am. J. Physiol., 1999, vol. 276, no.45, p. 1311.

    Google Scholar 

  21. Kuterman, E.M. and Khaspekova, N.B., Heart Rate during the Respiratory Test with Six Breaths a Minute, Fiziol. Chel., 1992, vol. 18, no.4, p. 52.

    CAS  Google Scholar 

  22. Aronov, D.M., Lupanov, V.P., Rogoza, A.N., and Lopatin, Yu.M., Functional Tests in Cardiology: Lecture VII. Functional Tests Based on Local Action on Nerve Terminals and Targeted Change in Venous Return, Kardiologiya, 1996, no. 7, p. 77.

  23. Heart Rate Variability: Standard of Measurement, Physiological Interpretation, and Clinical Use, Circulation, 1996, vol. 93, no.5, p. 1043.

  24. Kay, S.M. and Marple, S.L., Spectrum Analysis: A Modern Perspective, Proc. IEEE, 1981, vol. 69, p. 1380.

    Google Scholar 

  25. Marple, S.L., Jr., Tsifrovoi spektral'nyi analiz i ego prilozheniya (Numerical Spectral Analysis and Its Applications), Moscow: Mir, 1990.

    Google Scholar 

  26. Shapiro, S.S., Wilk, M.B., and Chen, H.J., A Comparative Study of Various Tests of Normality, J. Am. Stat. Assoc., 1968, vol. 63, p. 1343.

    Google Scholar 

  27. Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometr. Bull., 1945, vol. 1, p. 80.

    Google Scholar 

  28. Wilcoxon, F., Probability Tables for Individual Comparisons by Ranking Methods, Biometrics, 1947, vol. 3, p. 119.

    ISI  Google Scholar 

  29. Gridnev, V.I., Kotel'nikova, E.V., Morzhakov, A.A., et al., The Response of Heart Rate Frequency Components to Periodic Disturbance, Biomed. Tekhnol. Radioelektr., 2002, no. 1, p. 4.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziologiya Cheloveka, Vol. 31, No. 6, 2005, pp. 37–43.

Original Russian Text Copyright © 2005 by Kiselev, Kirichuk, Gridnev, Kolizhirina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, A.R., Kirichuk, V.F., Gridnev, V.I. et al. Assessment of Heart Autonomic Control on the Basis of Spectral Analysis of Heart Rate Variability. Hum Physiol 31, 651–656 (2005). https://doi.org/10.1007/s10747-005-0109-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10747-005-0109-x

Keywords

Navigation