Skip to main content

Advertisement

Log in

The heart and gut relationship: a systematic review of the evaluation of the microbiome and trimethylamine-N-oxide (TMAO) in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

There is an expanding body of research on the bidirectional relationship of the human gut microbiome and cardiovascular disease, including heart failure (HF). Researchers are examining the microbiome and gut metabolites, primarily trimethylamine-N-oxide (TMAO), to understand clinically observed outcomes. This systematic review explored the current state of the science on the evaluation and testing of the gut biome in persons with HF. Using electronic search methods of Medline, Embase, CINAHL, and Web of Science, until December 2021, we identified 511 HF biome investigations between 2014 and 2021. Of the 30 studies included in the review, six were 16S rRNA and nineteen TMAO, and three both TMAO and 16S rRNA, and two bacterial cultures. A limited range of study designs were represented, the majority involving single cohorts (n = 10) and comparing individuals with HF to controls (n = 15). Patients with HF had less biodiversity in fecal samples compared to controls. TMAO is associated with age, BNP, eGFR, HF severity, and poor outcomes including hospitalizations and mortality. Inconsistent across studies was the ability of TMAO to predict HF development, the independent prognostic value of TMAO when controlling for renal indices, and the relationship of TMAO to LVEF and CRP. Gut microbiome dysbiosis is associated with HF diagnosis, disease severity, and prognostication related to hospitalizations and mortality. Gut microbiome research in patients with HF is developing. Further longitudinal and multi-centered studies are required to inform interventions to promote clinical decision-making and improved patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bozkurt B, Coats AJS, Tsutsui H et al (2021) Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Euro J Heart Fail 23(3):352–380. https://doi.org/10.1002/ejhf.211549

    Article  Google Scholar 

  2. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MS (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation 26:CIR0000000000001052

  3. Virani SS, Alonso A, Aparicio HJ et al (2021) Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation 143(8):e254–e743. https://doi.org/10.1161/CIR0000000000000950

    Article  PubMed  Google Scholar 

  4. Lippi G, Sanchis-Gomar F (2020) Global epidemiology and future trends of heart failure. AME Med J 5:15. https://doi.org/10.21037/amj.2020.03.03

  5. Kitai T, Wilson Tang WHW (2018) Gut microbiota in cardiovascular disease and heart failure. Clin Sci 132(1):85–91. https://doi.org/10.1042/CS20171090

    Article  Google Scholar 

  6. Cresci S, Pereira NL, Ahmad F et al (2019) Heart failure in the era of precision medicine: a scientific statement from the American Heart Association. Circ: Genom Precis Med 12(10):e000058. https://doi.org/10.1161/HCG.0000000000000058

  7. Pasini E, Aquilani R, Testa C et al (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4(3):220–227. https://doi.org/10.1016/j.jchf.2015.10.00

    Article  PubMed  Google Scholar 

  8. Farzi A, Fröhlich EE, Holzer P (2018) Gut microbiota and the neuroendocrine system. Neurother 15(1):5–22. https://doi.org/10.1007/s13311-017-0600-5

    Article  CAS  Google Scholar 

  9. Slyepchenko A, Maes M, Machado-Vieira R et al (2016) Intestinal dysbiosis, gut hyperpermeability and bacterial translocation: missing links between depression, obesity and type 2 diabetes. Curr Pharm Des 22(40):6087–6106

    Article  CAS  Google Scholar 

  10. Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M (2019) Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep 8(3):317–332. https://doi.org/10.1007/s13679-019-00352-2

    Article  PubMed  Google Scholar 

  11. Lagkouvardos I, Pukall R, Abt B et al (2016) The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 1(10):16131. https://doi.org/10.1038/nmicrobiol.2016.131

    Article  CAS  PubMed  Google Scholar 

  12. Shukla SD, Budden KF, Neal R, Hansbro PM (2017) Microbiome effects on immunity, health and disease in the lung. Clini Transl Immunol 6(3):e133. https://doi.org/10.1038/cti.2017.6

    Article  CAS  Google Scholar 

  13. Laudadio I, Fulci V, Stronati L, Carissimi C (2019) Next-generation metagenomics: methodological challenges and opportunities. OMICS J Integr Biol 23(7):327–333. https://doi.org/10.1089/omi.2019.0073

    Article  CAS  Google Scholar 

  14. Mas-Lloret J, Obón-Santacana M, Ibáñez-Sanz G et al (2020) Gut microbiome diversity detected by high-coverage 16S and shotgun sequencing of paired stool and colon sample. Sci Data 7(1):92. https://doi.org/10.1038/s41597-020-0427-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zaheer R, Noyes N, Polo RO, Cook SR, Marinier E, Domselaar GV et al (2018) Impact of sequencing depth on the characterization of the microbiome and resistome. Sci Rep 8:5890. https://doi.org/10.1038/s41598-018-24280-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Comeau AM, Douglas GM, Langille MGI (2017) Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems 2(1):1–11. https://doi.org/10.1128/mSystems.00127-16

    Article  Google Scholar 

  17. Peabody MA, Van Rossum T, Lo R, Brinkman FSL (2015) Evaluation of shotgun metagenomics sequence classification methods using in silico and in vitro simulated communities. BMC Bioinform 16:362. https://doi.org/10.1186/s12859-015-0788

    Article  Google Scholar 

  18. McIntyre ABR, Ounit R, Afshinnekoo E, Prill RJ, Hénaff E, Alexander N et al (2017) Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol 18:182. https://doi.org/10.1186/s13059-017-1299-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chioncel O, Ambrosy AP (2019) Trimethylamine N-oxide and risk of heart failure progression: marker or mediator of disease. Eur J Heart Fail 21(7):887–890

    Article  Google Scholar 

  20. Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, Rexrode KM, Manson JE, Qi L (2020) Long-term changes in gut microbial metabolite trimethylamine N-oxide and coronary heart disease risk. J Am Coll Cardiol 75(7):763–772

    Article  CAS  Google Scholar 

  21. Lelli V, Belardo A, Timperio AM (2021) From targeted quantification to untargeted metabolomics. In (Ed.), Metabolomics – methodology and applications in medical sciences and life sciences. IntechOpen. https://doi.org/10.5772/intechopen.96852

  22. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18(3):e1003583. https://doi.org/10.1371/journal.pmed.1003583

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210

  24. Cui X, Ye L, Li J et al (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8(1):1–15. https://doi.org/10.1038/s41598-017-18756-2

    Article  CAS  Google Scholar 

  25. Dong Z, Liang Z, Wang X et al (2020) The correlation between plasma trimethylamine N-oxide level and heart failure classification in northern Chinese patients. Annals Palliat Med 9(5):2862–2871. https://doi.org/10.21037/apm-20-296

  26. Dong Z, Zheng S, Shen Z, Luo Y, Hai X (2021) Trimethylamine N-oxide is associated with heart failure risk in patients with preserved ejection fraction. Lab Med 52:346–351. https://doi.org/10.1093/labmed/lmaa075

    Article  PubMed  Google Scholar 

  27. Guo F, Qiu X, Tan Z, Li Z, Ouyang D (2020) Plasma trimethylamine N-oxide is associated with renal function in patients with heart failure with preserved ejection fraction. BMC Cardiovasc Disord 20:394. https://doi.org/10.1186/s12872-020-01669-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei H, Zhao M, Huang M et al (2021) FMO3-TMAO axis modulates the clinical outcome in chronic heart-failure patients with reduced ejection fraction: evidence from an Asian population. Front Med. https://doi.org/10.1007/s11684-021-0857-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou X, Jin M, Liu L, Yu Z, Lu X, Zhang H (2020) Trimethylamine N-oxide and cardiovascular outcomes in patients with chronic heart failure after myocardial infarction. ESC Heart Fail 7(1):189–194. https://doi.org/10.1002/ehf2.12552

    Article  Google Scholar 

  30. Hayashi T, Yamashita T, Watanabe H et al (2019) Gut microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure. Circ J 83(1):182–192. https://doi.org/10.1253/circj.CJ-18-0468

    Article  CAS  Google Scholar 

  31. Kamo T, Akazawa H, Suda W et al (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE 12(3):e0174099. https://doi.org/10.1371/journal.pone.0174099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katsimichas T, Ohtani T, Motooka D et al (2018) Non-ischemic heart failure with reduced ejection fraction is associated with altered intestinal microbiota. Circ J 82(6):1640–1650. https://doi.org/10.1253/circj.CJ-17-1285

    Article  CAS  PubMed  Google Scholar 

  33. Kinugasa Y, Nakamura K, Kamitani H, Masayuki H, Yanagihara K, Kato M, Yamamoto K (2021) Trimethylamine N-oxide and outcomes in patients hospitalized with acute heart failure and preserved ejection fraction. ESC Heart Fail 8:2103–2110. https://doi.org/10.1002/ehf2.13290

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luedde M, Winkler T, Heinsen F et al (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 4(3):282–290. https://doi.org/10.1002/ehf2.12155

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schuett K, Kleber ME, Scharnagl H et al (2017) Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 70(25):3202–3204. https://doi.org/10.1016/j.jacc.2017.10.064

    Article  PubMed  Google Scholar 

  36. Kummen M, Mayerhofer CCK, Vestad B et al (2018) Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol 71(10):1184–1186. https://doi.org/10.1016/j.jacc.2017.12.057

    Article  PubMed  Google Scholar 

  37. Mayerhofer CCK, Kummen M, Holm K et al (2020) Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Fail 7(2):456–466. https://doi.org/10.1002/ehf2.12596

    Article  PubMed  PubMed Central  Google Scholar 

  38. Trøseid M, Ueland T, Hov JR et al (2014) Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277(6):717–726. https://doi.org/10.1111/joim.12328

    Article  CAS  PubMed  Google Scholar 

  39. Salzano A, Israr MZ, Yazaki Y et al (2020) Combined use of trimethylamine N-oxide with BNP for risk straticiation in heart failure with preserved ejection fraction: findings from the DIAMONDHFpEF study. Eur J Prev Cardiol 27(19):2159–2162. https://doi.org/10.1177/2047487319870355

    Article  PubMed  Google Scholar 

  40. Suzuki T, Heaney LM, Bhandari SS, Jones DJL, Ng LL (2016) Trimethylamine N-oxide and prognosis in acute heart failure. Heart 102(11):841–848. https://doi.org/10.1136/heartjnl-2015-308826

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki T, Yazaki Y, Voors AA et al (2019) Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure: results from BIOSTAT-CHF. Eur J Heart Fail 21(7):877–886. https://doi.org/10.1002/ejhf.1338

    Article  CAS  PubMed  Google Scholar 

  42. Yazaki Y, Aizawa K, Israr MZ et al (2020) Ethnic differences in association of outcomes with trimethylamine N-oxide in acute heart failure patients. ESC Heart Fail 7(5):2373–2378. https://doi.org/10.1002/ehf2.12777

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yazaki Y, Salzano A, Nelson CP et al (2019) Geographical location affects the levels and association of trimethylamine N-oxide with heart failure mortality in BIOSTAT-CHF: a post-hoc analysis. Eur J Heart Fail 21(10):1291–1294. https://doi.org/10.1002/ejhf.1550

    Article  PubMed  Google Scholar 

  44. Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y, Heaney LM, Jones DJL, Ng LL, Suzuki T (2021) Association of gut-related metabolites with outcome in acute heart failure. Am Heart J 234:71–80. https://doi.org/10.1016/j.aha.2021.01.006

    Article  CAS  PubMed  Google Scholar 

  45. Lever M, George PM, Slow S et al (2014) Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLoS ONE 9(12):e114969. https://doi.org/10.1371/journal.pone.0114969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huntley D, Mollar A, Buesa J et al (2018) Are pathogenic intestinal bacteria present in stool specimens from patients with chronic heart failure? Diagn Microbiol Infect Dis 91(2):141–143. https://doi.org/10.1016/j.diagmicrobio.2018.01.011

    Article  PubMed  Google Scholar 

  47. Papandreou C, Bulló M, Hernández-Alonso P et al (2021) Choline metabolism and risk of atrial fibrillation and heart failure in the PREDIMED study. Clin Chem 67(1):288–297. https://doi.org/10.1093/clinchem/hvaa224

    Article  PubMed  Google Scholar 

  48. Winther SA, Øllgaard JC, Tofte N et al (2019) Utility of plasma concentration of trimethylamine N-oxide in predicting cardiovascular and renal complications in individuals with type 1 diabetes. Diabetes Care 42(8):1512–1520. https://doi.org/10.2337/dc19-0048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beale AL, O’Donnell JA, Nakai ME et al (2021) The gut microbiome of heart failure with preserved ejection fraction. J Am Heart Assoc 10:e020654. https://doi.org/10.1161/JAHA.120.020654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang WHW, Wang Z, Fan Y et al (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64(18):1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617

    Article  CAS  PubMed  Google Scholar 

  51. Tang WHW, Wang Z, Shrestha K et al (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21(2):91–96. https://doi.org/10.1016/j.cardfail.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  52. Yuzefpolskaya M, Bohn B, Nasiri M et al (2020) Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. J Heart Lung Transplant 39(9):880–890. https://doi.org/10.1016/j.healun.2020.02.004

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166(2):99–110. https://doi.org/10.1016/j.micres.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  54. Kitai T, Kirsop J, Tang WHW (2016) Exploring the microbiome in heart failure. Curr Heart Fail Rep 13(2):103–109. https://doi.org/10.1107/s11897-016-0285-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang WH, Hazen SL (2017) Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl Res 179:108–115

    Article  CAS  Google Scholar 

  56. Bischoff SC (2016) Microbiota and aging. Curr Opin Clin Nutr Metab Care 19(1):26–30. https://doi.org/10.1097/MCO.0000000000000242

    Article  CAS  PubMed  Google Scholar 

  57. Tang WHW, Hazen SL (2016) Dietary metabolism, gut microbiota and acute heart failure. Heart 102(11):813–814. https://doi.org/10.1136/heartjnl-2016-309268

    Article  CAS  PubMed  Google Scholar 

  58. Tektonidis TG, Akesson A, Gigante B, Wolk A, Larsson SC (2015) A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: a population-based cohort study. Atherosclerosis 243(1):93–98. https://doi.org/10.1016/j.atherosclerosis.2015.08.039

    Article  CAS  PubMed  Google Scholar 

  59. De Filippis F, Pellegrini N, Vannini L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821. https://doi.org/10.1136/gutjnl-2015-309957

    Article  CAS  PubMed  Google Scholar 

  60. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zheng Y, Li Y, Rimm EB, Hu FB, Albert CM, Rexrode KM, Manson JE, Qi L (2016) Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men. Am J Clin Nutr 104(1):173–180. https://doi.org/10.3945/ajcn.116.131771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grayston JT, Kronmal RA, Jackson LA et al (2005) Azithromycin for the secondary prevention of coronary events. N Engl J Med 352(16):1637–1645. https://doi.org/10.1056/NEJMoa043526

    Article  CAS  PubMed  Google Scholar 

  63. Cannon CP, Braunwald E, McCabe CH, Grayston JT, Muhlestein B, Giugliano RP, Cairns R, Skene AM (2005) Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome. N Engl J Med 352:1646–1654. https://doi.org/10.1056/NEJMoa043528

    Article  CAS  PubMed  Google Scholar 

  64. Kalambokis GN, Mouzaki A, Rodi M, Pappas K, Fotopoulos A, Xourgia X, Tsianos EV (2012) Rifaximin improves systemic hemodynamics and renal function in patients with alcohol-related cirrhosis and ascites. Clin Gastroenterol Hepatol 10(7):815–818. https://doi.org/10.1016/j.cgh.2012.02.025

    Article  CAS  PubMed  Google Scholar 

  65. Conraads VM, Jorens PG, De Clerck LS et al (2004) Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail 6(4):483–491. https://doi.org/10.1016/j.ejheart.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  66. Hutkins RW, Krumbeck JA, Bindels LB et al (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1–7. https://doi.org/10.1016/j.copbio.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  67. Ferrier KE, Muhlmann MH, Baguet JP, Cameron JD, Jennings GL, Dart AM, Kingwell BA (2002) Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol 39(6):1020–1025. https://doi.org/10.1016/s0735-1097(02)0717-5

    Article  CAS  PubMed  Google Scholar 

  68. Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(Suppl 2):S58–S61. https://doi.org/10.1086/523341

  69. Agerholm-Larsen L, Raben A, Haulrik N, Hansen AS, Manders M, Astrup A (2000) Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur J Clin Nutr 54(4):288–297. https://doi.org/10.1038/sj.ejcn.1600937

    Article  CAS  PubMed  Google Scholar 

  70. Kawase M, Hashimoto H, Hosoda M, Morita H, Hosono A (2000) Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci 83(2):255–263. https://doi.org/10.3168/jds.S0022-0302(00)74872-7

    Article  CAS  PubMed  Google Scholar 

  71. Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76(6):1249–1255. https://doi.org/10.1093/ajcn.76.6.1249

    Article  CAS  PubMed  Google Scholar 

  72. Costanza AC, Moscavitch SD, Faria Neto HCC, Mesquita ET (2015) Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol 179:348–350. https://doi.org/10.1016/j.ijcard.2014.11.034

    Article  PubMed  Google Scholar 

  73. Shibahara H, Shibahara N (2010) Cardiorenal protective effect of the oral uremic toxin absorbent AST-120 in chronic heart disease patients with moderate CKD. J Nephrol 23:535–540

    PubMed  Google Scholar 

  74. Nagatomo Y, Tang WHW (2015) Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail 21(12):973–980. https://doi.org/10.1016/j.cardfail.2015.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Y-J, Li S, Gan R-Y, Zhou T, Xu D-P, Li H-B (2015) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16(4):7493–7519. https://doi.org/10.3390/ijms16047493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gonzalez-Covarrubias V, Dane A, Hankemeier T, Vreeken RJ (2013) The influence of citrate, EDTA, and heparin anticoagulants to human plasma LC-MS lipidomic profiling. Metabolomics 9:337–348

    Article  CAS  Google Scholar 

  77. Li W, Huang A, Zhu H et al (2020) Gut microbiota-derived trimethylamine N-oxide is associated with poor prognosis in patients with heart failure. Med J Aust 213(8):374–379. https://doi.org/10.5694/mja2.50781

    Article  PubMed  Google Scholar 

  78. Gupta VK, Paul S, Dutta C (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 23(8):1162. https://doi.org/10.3389/fmicb.2017.01162 (PMID:28690602;PMCID:PMC5481955)

    Article  Google Scholar 

  79. Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI (2019) The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 6:190007. https://doi.org/10.1038/sdata.2019.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marizzoni M, Gurry T, Provasi S, Greub G, Lopizzo N, Ribaldi F, Festari C, Mazzelli M, Mombelli E, Salvatore M, Mirabelli P, Franzese M, Soricelli A, Frisoni GB, Cattaneo A (2020) Comparison of bioinformatics pipelines and operating systems for the analyses of 16S rRNA gene amplicon sequences in human fecal samples. Front Microbiol 11:1262. https://doi.org/10.3389/fmicb.2020.01262

    Article  PubMed  PubMed Central  Google Scholar 

  81. Prodan A, Tremaroli V, Brolin H, Zwinderman AH, Nieuwdorp M, Levin E (2020) Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE 15:e0227434. https://doi.org/10.1371/journal.pone.0227434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vandeputte D, Tito RY, Vanleeuwen R, Falony G, Raes J (2017) Practical considerations for large-scale gut microbiome studies. FEMS Microbiol Rev 41(Supp_1):S154–S167. https://doi.org/10.1093/femsre/fux027

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: KMA, CMR. Developing the theory or model: not applicable. Acquisition of data: ECA. Analysis: KMA, CMR, EM, CEF. Interpretation of findings: KMA, CMR, CEF, EPF. Drafting/writing of the manuscript: KMA, CMR, CEF, EPF, ECA. Critical review and revision of the final manuscript: KMA, CMR, EM, CEF, EPF, ECA.

Corresponding author

Correspondence to Kelley M. Anderson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, K.M., Ferranti, E.P., Alagha, E.C. et al. The heart and gut relationship: a systematic review of the evaluation of the microbiome and trimethylamine-N-oxide (TMAO) in heart failure. Heart Fail Rev 27, 2223–2249 (2022). https://doi.org/10.1007/s10741-022-10254-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10254-6

Keywords

Navigation