Skip to main content

Advertisement

Log in

Drugs’ development in acute heart failure: what went wrong?

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Acute heart failure (AHF) is a major burden disease, with a complex physiopathology, unsatisfactory diagnosis, treatment and a very poor prognosis. In the last two decades, a number of drugs have progressed from preclinical to early and late clinical development, but only a few of them have been approved and added to a stagnant pharmacological armamentarium. We have reviewed the data published on drugs developed for AHF since early 2000s, trying to recognise factors that have worked for a successful approval or for the stoppage of the program, in an attempt to delineate future trajectories for AHF drug development. Our review has identified limitations at both preclinical and clinical levels. At the preclinical level, the major shortcoming is represented by animal models looking at short-term endpoints which do not recapitulate the complexity of the human disease. At the clinical level, the main weakness is given by the disconnect between short-term endpoints assessed in the early stage of drug development, and medium–long-term endpoints requested in Phase 3 for regulatory approval. This is further amplified by the lack of validation and standardisation of short- and long-term endpoints; absence of predictive biomarkers; conduct of studies on heterogeneous populations; and use of different eligibility criteria, time of assessments, drug schedules and background therapies. Key goals remain a better understanding of AHF and the construction of a successful drug development program. A reasonable way to move forward resides in a strong collaboration between main stakeholders of therapeutic innovation: scientific community, industry and regulatory agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

angiotensin-converting enzyme

ARB:

angiotensin II receptor blockers

ADHF:

acute decompensated heart failure

AHF:

acute heart failure

AMI:

acute myocardial infarction

ANP:

atrial natriuretic peptide

AUC:

area under the curve

BM:

biomarker

BNP:

brain natriuretic peptide

BUN:

blood urea nitrogen

CAD:

coronary artery disease

CHR:

chest X-ray

CHF:

cardiac heart failure

CI:

cardiac index

CO:

cardiac output

COPD:

chronic obstructive pulmonary disease

Cr:

creatine

CV:

cardiovascular

DAOH:

days alive out of the hospital

DBP:

diastolic blood pressure

EF:

ejection fraction

eGFR:

estimated glomerular filtration rate

EMA:

European Medicine Agency

ESC:

European Society of Cardiology

FDA:

Food and Drug Administration

GFR:

glomerular filtration rate

GA:

global assessment

HD:

haemodynamics

HF:

heart failure

HFpEF:

heart failure with preserved ejection fraction

HFrEF:

heart failure with reduced ejection fraction

HP:

horizontal pitfall

HR:

heart rate

HV:

healthy volunteer

KIM-1:

interleukin-18 kidney injury molecule

LADA:

left anterior descending artery

LVEF:

left ventricular ejection fraction

LOS:

length of stay

LS:

Likert scale

MoA:

mechanism of action

NE:

norephinefrine

NGAL:

neutrophil gelatinase-associated lipocalin

NYHA:

New York Heart Association

NO:

nitric oxide

OH:

out of hospital

OM:

Omecamtiv Mecarbil

PAP:

pulmonary artery pressure

PCWP:

pulmonary capillary wedge pressure

PoC:

proof of concept

PoM:

proof of mechanism

PoP:

proof of principle

pro-BNP:

pro-brain natriuretic peptide

RAP:

renal arterial pressures

RAAS:

renin–angiotensin–aldosterone system

REP:

regulatory endpoint

RH:

re-hospitalisation

ROS:

reactive oxygen species

RR:

respiratory rate

SBP:

systolic blood pressure

SCr:

serum creatinine

SoC:

standard of care

SV:

stroke volume

TNF:

tumour necrosis factor

Tx:

treatment

US:

United States of America

VAS:

visual analogue scale

VP:

vertical pitfall

WAHF:

worsening of acute heart failure

References

  1. Cowie MR, Anker SD, Cleland JGF, Felker GM, Filippatos G, Jaarsma T et al (2014) Improving care for patients with acute heart failure: before, during and after hospitalization. ESC Heart Fail 1(2):110–145

    Article  PubMed  Google Scholar 

  2. Kuo DC, Peacock WF (2015) Diagnosing and managing acute heart failure in the emergency department. Clin Exp Emerg Med 2(3):141–149

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hammond DA, Smith MN, Lee KC, Honein D, Quidley AM (2016) Acute decompensated heart failure. J Intensive Care Med

  4. Collins S, Storrow AB, Albert NM, Butler J, Ezekowitz J, Felker GM et al (2015) Early management of patients with acute heart failure: state of the art and future directions. a consensus document from the Society for Academic Emergency Medicine/Heart Failure Society of America Acute Heart Failure Working Group. J Card Fail 21(1):27–43

    Article  PubMed  Google Scholar 

  5. Lala A, Mcnulty SE, Mentz RJ, Dunlay SM, Vader JM, Abouezzeddine OFF et al (2015) Relief and recurrence of congestion during and after hospitalization for acute heart failureCLINICAL PERSPECTIVE. Circulation. Heart Failure 8(4):741–748

    Article  PubMed  Google Scholar 

  6. Gheorghiade M, Adams KF, Cleland JG, Cotter G, Felker GM, Filippatos GS et al (2009) Phase III clinical trial endpoints in acute heart failure syndromes: a virtual roundtable with the acute heart failure syndromes international working group. Am Heart J 157(6):957–970

    Article  PubMed  Google Scholar 

  7. Allen LA, Hernandez AF, O'Connor CM, Felker GM (2009) Endpoints for clinical trials in acute heart failure syndromes. J Am Coll Cardiol 53(24):2248–2258

    Article  PubMed  PubMed Central  Google Scholar 

  8. Felker GM, Pang PS, Adams KF, Cleland JG, Cotter G, Dickstein K et al (2010) Clinical trials of pharmacological therapies in acute heart failure syndromes: lessons learned and directions forward. Circ Heart Fail 3(2):314–325

    Article  PubMed  Google Scholar 

  9. Allen CJ, Guha K, Sharma R (2015) How to improve time to diagnosis in acute heart failure—clinical signs and chest X-ray. Card Fail Rev 1(2):69

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mcdonagh TA, Komajda M, Maggioni AP, Zannad F, Gheorghiade M, Metra M et al (2011) Clinical trials in acute heart failure: simpler solutions to complex problems. Consensus document arising from a European Society of Cardiology cardiovascular round-table think tank on acute heart failure, 12 May 2009. Eur J Heart Fail 13(12):1253–1260

    Article  PubMed  Google Scholar 

  11. Givertz MM, Teerlink JR, Albert NM, Canary CAW, Collins SP, Colvin-Adams M et al (2013) Acute decompensated heart failure: update on new and emerging evidence and directions for future research. J Card Fail 19(6):371–389

    Article  PubMed  Google Scholar 

  12. Tran HA, Lin F, Greenberg BH (2016) Potential new drug treatments for congestive heart failure. Expert Opin Investig Drugs 25(7):811–826

    Article  PubMed  CAS  Google Scholar 

  13. Bradley E (2012) Incorporating biomarkers into clinical trial designs: points to consider. Nat Biotechnol 30(7):596–599

    Article  PubMed  CAS  Google Scholar 

  14. Ritchie J, Katugampola S, Jones P (2016) No biomarker, no trial. Transl Sci 2:18–24 https://thetranslationalscientist.com/fileadmin/issues/PDFs/TTS_0216.pdf

    Google Scholar 

  15. Park HS, Jung IS, Lim NH, Sung JH, Lee S, Moon BS et al (2014) Proof of mechanism study of a novel serotonin transporter blocker, DA-8031, using [11C]DASB positron emission tomography and in-vivo microdialysis. Urology 84(1):245.e1–245.e7

    Article  Google Scholar 

  16. Boland K, Moschetti V, Dansirikul C, Pichereau S, Gheyle L, Runge F et al (2017) A Phase I, randomized, proof-of-clinical-mechanism study assessing the pharmacokinetics and pharmacodynamics of the oral PDE9A inhibitor BI 409306 in healthy male volunteers. Hum Psychopharmacol Clin Exp 32(1):e2569

    Article  CAS  Google Scholar 

  17. Schmidt B (2006) Proof of principle studies. Epilepsy Res 68(1):48–52

    Article  PubMed  Google Scholar 

  18. Owens PK, Raddad E, Miller JW, Stille JR, Olovich KG, Smith NV, Jones RS, Scherer JC (2015) A decade of innovation in pharmaceutical R&D: the Chorus model. Nat Rev Drug Discov 14(1):17–28

    Article  PubMed  CAS  Google Scholar 

  19. Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP et al (2010) A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karlsson KE, Vong C, Bergstrand M, Jonsson EN, Karlsson MO (2013) Comparisons of analysis methods for proof-of-concept trials. CPT: Pharmacometrics Syst Pharmacol 2(1):e23

    CAS  Google Scholar 

  21. Borer JS (2004) Development of cardiovascular drugs. J Am Coll Cardiol 44(12):2285–2292

    Article  PubMed  Google Scholar 

  22. FDA (2007) Guidance for industry: clinical trial endpoints for the approval of cancer drugs and biologics. Biotechnol Law Rep 26(4):375–386

    Article  Google Scholar 

  23. Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Eur J Heart Fail 10:933–989

    Article  PubMed  Google Scholar 

  24. McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Eur Heart J 33:1787–1847

    Article  PubMed  Google Scholar 

  25. Ponikowski P, Voors AA, Anker SD et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  26. Pollesello P (2014) Drug discovery and development for acute heart failure drugs: are expectations too high? Int J Cardiol 172:11–13

    Article  PubMed  Google Scholar 

  27. Gheorghiade M, Pang PS (2009) Acute heart failure syndromes. J Am Coll Cardiol 53(7):557–573

    Article  PubMed  Google Scholar 

  28. Allen LA, O'Connor CM (2007) Management of acute decompensated heart failure. CMAJ 176(6):797–805

    Article  PubMed  PubMed Central  Google Scholar 

  29. Greene SJ, Gheorghiade M, Borlaug BA, Pieske B, Vaduganathan M, Burnett JC Jr et al (2013) The cGMP signaling pathway as a therapeutic target in heart failure with preserved ejection fraction. J Am Heart Assoc 2(6):e000536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zouein FA, de Castro Bras LE, da Costa DV, Lindsey ML, Kurdi M, Booz GW (2013) Heart failure with preserved ejection fraction: emerging drug strategies. J Cardiovasc Pharmacol 62(1):13–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Borlaug BA, Redfield MM (2011) Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123(18):2006–2013 discussion 2014

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang NC, Maggioni AP, Konstam MA, Zannad F, Krasa HB, Burnett JC Jr et al (2008) Clinical implications of QRS duration in patients hospitalized with worsening heart failure and reduced left ventricular ejection fraction. JAMA 299(22):2656–2666

    Article  PubMed  CAS  Google Scholar 

  33. Sabbah HN (2017) Pathophysiology of acute heart failure syndrome: a knowledge gap. Heart Fail Rev 22(6):621–639

    Article  PubMed  CAS  Google Scholar 

  34. Rehman SU, Mueller T, Januzzi JL Jr (2008) Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol 52(18):1458–1465

    Article  PubMed  CAS  Google Scholar 

  35. Ponikowski P, Jankowska EA (2015) Pathogenesis and clinical presentation of acute heart failure. Rev Esp Cardiol (Engl Ed) 68(4):331–337

    Article  Google Scholar 

  36. Gealekman O, Abassi Z, Rubinstein I, Winaver J, Binah O (2002) Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure. Circulation 105(2):236–243

    Article  PubMed  CAS  Google Scholar 

  37. Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JE, Cleland JG et al (2010) Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail 12(5):423–433

    Article  PubMed  Google Scholar 

  38. Sarraf M, Masoumi A, Schrier RW (2009) Cardiorenal syndrome in acute decompensated heart failure. Clin J Am Soc Nephrol 4(12):2013–2026

    Article  PubMed  CAS  Google Scholar 

  39. Ferrari R, Bohm M, Cleland JG, Paulus WJ, Pieske B, Rapezzi C et al (2015) Heart failure with preserved ejection fraction: uncertainties and dilemmas. Eur J Heart Fail 17(7):665–671

    Article  PubMed  CAS  Google Scholar 

  40. Davie AP, Francis CM, Caruana L, Sutherland GR, McMurray JJ (1997) Assessing diagnosis in heart failure: which features are any use? QJM 90(5):335–339

    Article  PubMed  CAS  Google Scholar 

  41. Nieminen MS, Bohm M, Cowie MR, Drexler H, Filippatos GS, Jondeau G et al (2005) Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J 26(4):384–416

    Article  PubMed  Google Scholar 

  42. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol (Engl Ed) 69(12):1167

    Article  Google Scholar 

  43. Forrester JS, Diamond GA, Swan HJ (1977 Feb) Correlative classification of clinical and hemodynamic function after acute myocardial infarction. Am J Cardiol 39(2):137–145

    Article  PubMed  CAS  Google Scholar 

  44. EMA (2015). Guideline on clinical investigation of medicinal products for the treatment of acute heart failure. European Medicines Agency. CPMP/EWP/2986/03 Rev. 1. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2017/09/WC500235089.pdf (accessed on 10 March 2017)

  45. Nohria A et al (2003) Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol 41(10):1797–1804

    Article  PubMed  Google Scholar 

  46. Fonarow GC, Weber JE (2004) Rapid clinical assessment of hemodynamic profiles and targeted treatment of patient with acutely decompensated heart failure. Clin Cardiol 27(S5):1–9

    Article  Google Scholar 

  47. Bennett JA, Riegel B, Bittner V, Nichols J (2002) Validity and reliability of the NYHA classes for measuring research outcomes in patients with cardiac disease. Heart Lung 31(4):262–270

    Article  PubMed  Google Scholar 

  48. Miller-Davis C, Marden S, Leidy NK (2006) The New York Heart Association classes and functional status: what are we really measuring? Heart Lung: J Acute Crit Care 35(4):217–224

    Article  Google Scholar 

  49. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364(9):797–805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Publication Committee for the VMAC Investigators (Vasodilatation in the Management of Acute CHF) (2002) Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 287(12):1531–1540

    Google Scholar 

  51. Farmakis D, Alvarez J, Ben Gal T, Brito D, Fedele F, Fonseca C et al (2016) Levosimendan beyond inotropy and acute heart failure: evidence of pleiotropic effects on the heart and other organs: an expert panel position paper. Int J Cardiol 222:303–312

    Article  PubMed  Google Scholar 

  52. Kamath SR, Jaykumar I, Matha S (2009) Levosimendan. Indian Pediatr 46:593–596

  53. Singh A, Laribi S, Teerlink JR, Mebazaa A (2017) Agents with vasodilator properties in acute heart failure. Eur Heart J 38:317–325

    Article  PubMed  Google Scholar 

  54. Pollesello P, Parissis J, Kivikko M, Harjola VP (2016) Levosimendan meta-analyses: Is there a pattern in the effect on mortality? Int J Cardiol 209:77–83

    Article  PubMed  CAS  Google Scholar 

  55. McCullogh P (2017) How trialists and pharmaceutical sponsors have failed us by thinking that acute heart failure is a 48-hour illness. Am J Cardiol 120:505–508

    Article  Google Scholar 

  56. Orion Pharma (2010). Simdax (levosimendan). Summary of product characteristics. Revision. http://www.simdax.com/siteassets/ (accessed on 17 November 2017)

  57. Searle J, Frick J, Möckel M (2016) Acute heart failure facts and numbers: acute heart failure populations. ESC Heart Fail 3(2):65–70

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gheorghiade M, Filippatos G (2005) Reassessing treatment of acute heart failure syndromes: the ADHERE Registry. Eur Heart J Suppl 7(suppl_B):B13–B19. https://doi.org/10.1093/eurheartj/sui008

    Article  Google Scholar 

  59. Gheorghiade M, Filippatos G, De Luca L, Burnett J (2006) Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med 119(12 Suppl 1):S3–S10

    Article  PubMed  Google Scholar 

  60. O'Connor CM, Stough WG, Gallup DS, Hasselblad V, Gheorghiade M (2005) Demographics, clinical characteristics, and outcomes of patients hospitalized for decompensated heart failure: observations from the IMPACT-HF registry. J Card Fail 11(3):200–205

    Article  PubMed  Google Scholar 

  61. Gheorghiade M, Pang PS, Ambrosy AP, Lan G, Schmidt P, Filippatos G et al (2012) A comprehensive, longitudinal description of the in-hospital and post-discharge clinical, laboratory, and neurohormonal course of patients with heart failure who die or are re-hospitalized within 90 days: analysis from the EVEREST trial. Heart Fail Rev 17(3):485–509

    Article  PubMed  Google Scholar 

  62. Gaggin HK, Januzzi JL Jr (2013) Biomarkers and diagnostics in heart failure. Biochim Biophys Acta 1832(12):2442–2450

    Article  PubMed  CAS  Google Scholar 

  63. Vaduganathan M, Greene SJ, Ambrosy AP, Gheorghiade M, Butler J (2013) The disconnect between Phase II and Phase III trials of drugs for heart failure. Nat Rev Cardiol 10(2):85–97

    Article  PubMed  CAS  Google Scholar 

  64. Zannad F, Garcia AA, Anker SD, Armstrong PW, Calvo G, Cleland JG et al (2013) Clinical outcome endpoints in heart failure trials: a European Society of Cardiology Heart Failure Association consensus document. Eur J Heart Fail 15(10):1082–1094

    Article  PubMed  Google Scholar 

  65. Mebazaa A, Longrois D, Metra M, Mueller C, Richards AM, Roessig L et al (2015) Agents with vasodilator properties in acute heart failure: how to design successful trials. Eur J Heart Fail 17(7):652–664

    Article  PubMed  Google Scholar 

  66. Hanigan S, Didomenico RJ (2016) Emerging therapies for acute and chronic heart failure. J Pharm Pract 29(1):46–57

    Article  PubMed  Google Scholar 

  67. FDA. Clin Trial Gov (2017). https://clinicaltrials.gov/ (accessed on 20 October 2017)

  68. Krupicka J, Janota T, Kasalova Z, Hradec J (2009) Natriuretic peptides—physiology, pathophysiology and clinical use in heart failure. Physiol Res 58(2):171–177

    PubMed  CAS  Google Scholar 

  69. Felker GM, Mentz RJ, Cole R, Adams KF, Egnaczyk GF, Fiuzat M et al (2016) Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol 69(11):1399–1406

    Article  PubMed  CAS  Google Scholar 

  70. Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 191:341–366

    Article  CAS  Google Scholar 

  71. Mohammed SF, Korinek J, Chen HH, Burnett JC, Redfield MM (2008) Nesiritide in acute decompensated heart failure: current status and future perspectives. Rev Cardiovasc Med 9(3):151–158

    PubMed  PubMed Central  Google Scholar 

  72. Wada A, Tsutamoto T, Matsuda Y, Kinoshita M (1994) Cardiorenal and neurohumoral effects of endogenous atrial natriuretic peptide in dogs with severe congestive heart failure using a specific antagonist for guanylate cyclase-coupled receptors. Circulation 89(5):2232–2240

    Article  PubMed  CAS  Google Scholar 

  73. Stevens TL, Rasmussen TE, Wei CM, Kinoshita M, Matsuda Y, Burnett JC Jr (1996) Renal role of the endogenous natriuretic peptide system in acute congestive heart failure. J Card Fail 2(2):119–125

    Article  PubMed  CAS  Google Scholar 

  74. Holmes SJ, Espiner EA, Richards AM, Yandle TG, Frampton C (1993) Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal man. J Clin Endocrinol Metab 76(1):91–96

    PubMed  CAS  Google Scholar 

  75. Mills RM, LeJemtel TH, Horton DP, Liang C, Lang R, Silver MA et al (1999) Sustained hemodynamic effects of an infusion of nesiritide (human b-type natriuretic peptide) in heart failure: a randomized, double-blind, placebo-controlled clinical trial. Natrecor Study group. J Am Coll Cardiol 34(1):155–162

    Article  PubMed  CAS  Google Scholar 

  76. O'Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V et al (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365(1):32–43

    Article  PubMed  CAS  Google Scholar 

  77. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N (1997) The novel calcium sensitizer levosimendan activates the ATP-sensitive K+ channel in rat ventricular cells. J Pharmacol Exp Ther 283(1):375–383

    PubMed  CAS  Google Scholar 

  78. Kaheinen P, Pollesello P, Levijoki J, Haikala H (2001) Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 37(4):367–374

    Article  PubMed  CAS  Google Scholar 

  79. Pagel PS, Harkin CP, Hettrick DA, Warltier DC (1994) Levosimendan (OR-1259), a myofilament calcium sensitizer, enhances myocardial contractility but does not alter isovolumic relaxation in conscious and anesthetized dogs. Anesthesiology 81(4):974–987

    Article  PubMed  CAS  Google Scholar 

  80. Harkin CP, Pagel PS, Tessmer JP, Warltier DC (1995) Systemic and coronary hemodynamic actions and left ventricular functional effects of levosimendan in conscious dogs. J Cardiovasc Pharmacol 26(2):179–188

    Article  PubMed  CAS  Google Scholar 

  81. Nieminen MS, Akkila J, Hasenfuss G, Kleber FX, Lehtonen LA, Mitrovic V et al (2000) Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J Am Coll Cardiol 36(6):1903–1912

    Article  PubMed  CAS  Google Scholar 

  82. Packer M, Colucci W, Fisher L, Massie BM, Teerlink JR, Young J et al (2013) Effect of levosimendan on the short term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail 1(2):103–111

    Article  PubMed  Google Scholar 

  83. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ et al (2007) Levosimendan vs dobutamine for patients with acute decompensated heart failure: the SURVIVE randomized trial. JAMA 297(17):1883–1891

    Article  PubMed  CAS  Google Scholar 

  84. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K et al (2002) Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 360(9328):196–202

    Article  PubMed  CAS  Google Scholar 

  85. Moiseyev VS, Poder P, Andrejevs N, Ruda MY, Golikov AP, Lazebnik LB et al (2002) Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur Heart J 23(18):1422–1432

    Article  PubMed  CAS  Google Scholar 

  86. Watkins PB, Lewis JH, Kaplowitz N, Alpers DH, Blais JD, Smotzer DM et al (2015) Clinical pattern of tolvaptan-associated liver injury in subjects with autosomal dominant polycystic kidney disease: analysis of clinical trials database. Drug Saf 38(11):1103–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yamamura Y, Nakamura S, Itoh S, Hirano T, Onogawa T, Yamashita T et al (1998) OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther 287(3):860–867

    PubMed  CAS  Google Scholar 

  88. Onogawa T, Sakamoto Y, Nakamura S, Nakayama S, Fujiki H, Yamamura Y (2011) Effects of tolvaptan on systemic and renal hemodynamic function in dogs with congestive heart failure. Cardiovasc Drugs Ther 25(Suppl 1):S67–S76

    Article  PubMed  CAS  Google Scholar 

  89. Shoaf SE, Wang Z, Bricmont P, Mallikaarjun S (2007) Pharmacokinetics, pharmacodynamics, and safety of tolvaptan, a nonpeptide AVP antagonist, during ascending single-dose studies in healthy subjects. J Clin Pharmacol 47(12):1498–1507

    Article  PubMed  CAS  Google Scholar 

  90. Gheorghiade M, Gattis WA, O’Connor CM, Adams KF Jr, Elkayam U, Barbagelata A et al (2004) Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 291(16):1963–1971

    Article  PubMed  CAS  Google Scholar 

  91. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K et al (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA 297(12):1319–1331

    Article  PubMed  CAS  Google Scholar 

  92. Mulder P, Boujedaini H, Richard V, Derumeaux G, Henry JP, Renet S et al (2000) Selective endothelin-A versus combined endothelin-A/endothelin-B receptor blockade in rat chronic heart failure. Circulation 102(5):491–493

    Article  PubMed  CAS  Google Scholar 

  93. Mitrovic V, Seferovic PM, Simeunovic D, Ristic AD, Miric M, Moiseyev VS et al (2006) Haemodynamic and clinical effects of ularitide in decompensated heart failure. Eur Heart J 27(23):2823–2832

    Article  PubMed  CAS  Google Scholar 

  94. Clozel M, Ramuz H, Clozel JP, Breu V, Hess P, Loffler BM et al (1999) Pharmacology of tezosentan, new endothelin receptor antagonist designed for parenteral use. J Pharmacol Exp Ther 290(2):840–846

    PubMed  CAS  Google Scholar 

  95. Coletta AP, Cleland JG (2001) Clinical trials update: highlights of the scientific sessions of the XXIII Congress of the European Society of Cardiology—WARIS II, ESCAMI, PAFAC, RITZ-1 and TIME. Eur J Heart Fail 3(6):747–750

    Article  PubMed  CAS  Google Scholar 

  96. Louis A, Cleland JG, Crabbe S, Ford S, Thackray S, Houghton T et al (2001) Clinical trials update: CAPRICORN, COPERNICUS, MIRACLE, STAF, RITZ-2, RECOVER and RENAISSANCE and cachexia and cholesterol in heart failure. Highlights of the Scientific Sessions of the American College of Cardiology, 2001. Eur J Heart Fail 3(3):381–387

    Article  PubMed  CAS  Google Scholar 

  97. Torre-Amione G, Young JB, Colucci WS, Lewis BS, Pratt C, Cotter G et al (2003) Hemodynamic and clinical effects of tezosentan, an intravenous dual endothelin receptor antagonist, in patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 42(1):140–147

    Article  PubMed  CAS  Google Scholar 

  98. McMurray JJ, Teerlink JR, Cotter G, Bourge RC, Cleland JG, Jondeau G et al (2007) Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. JAMA 298(17):2009–2019

    Article  PubMed  CAS  Google Scholar 

  99. Massie BM, O'Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G et al (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363(15):1419–1428

    Article  PubMed  Google Scholar 

  100. Kawabata M, Ogawa T, Takabatake T (1998) Control of rat glomerular microcirculation by juxtaglomerular adenosine A1 receptors. Kidney Int Suppl 67:S228–S230

    Article  PubMed  CAS  Google Scholar 

  101. Aki Y, Tomohiro A, Nishiyama A, Kiyomoto K, Kimura S, Abe Y (1997) Effects of KW-3902, a selective and potent adenosine A1 receptor antagonist, on renal hemodynamics and urine formation in anesthetized dogs. Pharmacology 55(4):193–201

    Article  PubMed  CAS  Google Scholar 

  102. Dittrich HC, Gupta DK, Hack TC, Dowling T, Callahan J, Thomson S (2007) The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Card Fail 13(8):609–617

    Article  PubMed  CAS  Google Scholar 

  103. Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC (2007 Oct 16) CKI-201 and CKI-202 Investigators. The effects of KW-3902, an adenosine A1-receptor antagonist,on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50(16):1551–1560

    Article  PubMed  CAS  Google Scholar 

  104. Ghosh RK, Banerjee K, Tummala R, Ball S, Ravakhah K, Gupta A (2017) Serelaxin in acute heart failure: most recent update on clinical and preclinical evidence. Cardiovasc Ther 35(1):55–63

    Article  PubMed  CAS  Google Scholar 

  105. Debrah DO, Conrad KP, Jeyabalan A, Danielson LA, Shroff SG (2005) Relaxin increases cardiac output and reduces systemic arterial load in hypertensive rats. Hypertension 46(4):745–750

    Article  PubMed  CAS  Google Scholar 

  106. Danielson LA, Sherwood OD, Conrad KP (1999) Relaxin is a potent renal vasodilator in conscious rats. J Clin Invest 103(4):525–533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Bani D, Masini E, Bello MG, Bigazzi M, Sacchi TB (1998) Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart. Am J Pathol 152(5):1367–1376

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Masini E, Bani D, Bello MG, Bigazzi M, Mannaioni PF, Sacchi TB (1997) Relaxin counteracts myocardial damage induced by ischemia-reperfusion in isolated guinea pig hearts: evidence for an involvement of nitric oxide. Endocrinology 138(11):4713–4720

    Article  PubMed  CAS  Google Scholar 

  109. Dahlke M, Ng D, Yamaguchi M, Machineni S, Berger S, Canadi J et al (2015) Safety and tolerability of serelaxin, a recombinant human relaxin-2 in development for the treatment of acute heart failure, in healthy Japanese volunteers and a comparison of pharmacokinetics and pharmacodynamics in healthy Japanese and Caucasian populations. J Clin Pharmacol 55(4):415–422

    Article  PubMed  CAS  Google Scholar 

  110. Ponikowski P, Mitrovic V, Ruda M, Fernandez A, Voors AA, Vishnevsky A et al (2014) A randomized, double-blind, placebo-controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure. Eur Heart J 35(7):431–441

    Article  PubMed  CAS  Google Scholar 

  111. Teerlink JR, Metra M, Felker GM, Ponikowski P, Voors AA, Weatherley BD et al (2009) Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding Phase IIb study. Lancet 373(9673):1429–1439

    Article  PubMed  CAS  Google Scholar 

  112. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH et al (2013) Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381(9860):29–39

    Article  PubMed  CAS  Google Scholar 

  113. Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G (2015) Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J 36(12):715–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Abassi ZA, Powell JR, Golomb E, Keiser HR (1992) Renal and systemic effects of urodilatin in rats with high-output heart failure. Am J Phys 262(4 Pt 2):F615–F621

    CAS  Google Scholar 

  115. Chen HH, Cataliotti A, Schirger JA, Martin FL, Burnett JC Jr (2005) Equimolar doses of atrial and brain natriuretic peptides and urodilatin have differential renal actions in overt experimental heart failure. Am J Phys Regul Integr Comp Phys 288(5):R1093–R1097

    CAS  Google Scholar 

  116. Kentsch M, Ludwig D, Drummer C, Gerzer R, Muller-Esch G (1992) Haemodynamic and renal effects of urodilatin in healthy volunteers. Eur J Clin Investig 22(5):319–325

    Article  CAS  Google Scholar 

  117. Elsner D, Muders F, Muntze A, Kromer EP, Forssmann WG, Riegger GA (1995) Efficacy of prolonged infusion of urodilatin [ANP-(95-126)] in patients with congestive heart failure. Am Heart J 129(4):766–773

    Article  PubMed  CAS  Google Scholar 

  118. Mitrovic V, Luss H, Nitsche K, Forssmann K, Maronde E, Fricke K et al (2005) Effects of the renal natriuretic peptide urodilatin (ularitide) in patients with decompensated chronic heart failure: a double-blind, placebo-controlled, ascending-dose trial. Am Heart J 150(6):1239

    Article  PubMed  Google Scholar 

  119. Walczewska J, Dzieza-Grudnik A, Siga O, Grodzicki T (2014) The role of urocortins in the cardiovascular system. J Physiol Pharmacol 65(6):753–766

    PubMed  CAS  Google Scholar 

  120. Teerlink JR, Felker GM, McMurray JJ, Ponikowski P, Metra M, Filippatos GS et al (2016) Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure: the ATOMIC-AHF study. J Am Coll Cardiol 67(12):1444–1455

    Article  PubMed  CAS  Google Scholar 

  121. Chen ZW, Huang Y, Yang Q, Li X, Wei W, He GW (2005) Urocortin-induced relaxation in the human internal mammary artery. Cardiovasc Res 65(4):913–920

    Article  PubMed  CAS  Google Scholar 

  122. Secilmis MA, Ozu OY, Emre M, Buyukafsar K, Kiroglu OE, Ertug P et al (2007) Urocortin induces endothelium-dependent vasodilatation and hyperpolarization of rat mesenteric arteries by activating Ca2+-activated K+ channels. Tohoku J Exp Med 213(1):89–98

    Article  PubMed  CAS  Google Scholar 

  123. Rademaker MT, Charles CJ, Ellmers LJ, Lewis LK, Nicholls MG, Richards AM (2011) Prolonged urocortin 2 administration in experimental heart failure: sustained hemodynamic, endocrine, and renal effects. Hypertension 57(6):1136–1144

    Article  PubMed  CAS  Google Scholar 

  124. Venkatasubramanian S, Griffiths ME, McLean SG, Miller MR, Luo R, Lang NN et al (2013) Vascular effects of urocortins 2 and 3 in healthy volunteers. J Am Heart Assoc 2(1):e004267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Chan WY, Frampton CM, Crozier IG, Troughton RW, Richards AM (2013) Urocortin-2 infusion in acute decompensated heart failure: findings from the UNICORN study (urocortin-2 in the treatment of acute heart failure as an adjunct over conventional therapy). JACC Heart Fail 1(5):433–441

    Article  PubMed  Google Scholar 

  126. Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K et al (2010) Selectively engaging beta-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335(3):572–579

    Article  PubMed  CAS  Google Scholar 

  127. Boerrigter G, Lark MW, Whalen EJ, Soergel DG, Violin JD, Burnett JC (2011) Jr. Cardiorenal actions of TRV120027, a novel ss-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ Heart Fail. 4(6):770–778

    Article  PubMed  CAS  Google Scholar 

  128. Soergel DG, Subach RA, Cowan CL, Violin JD, Lark MW (2013) First clinical experience with TRV027: pharmacokinetics and pharmacodynamics in healthy volunteers. J Clin Pharmacol 53(9):892–899

    Article  PubMed  CAS  Google Scholar 

  129. Trevena (2012). A randomized, double-blind, placebo-controlled, adaptive, ascending dose-titration study to evaluate the safety, tolerability, pharmacokinetics, and invasive hemodynamics of TRV120027 in patients with stable heart failure (press release). http://www.trevena.com/news-details.php?id=41 (accessed on 7 November 2017)

  130. Felker GM, Butler J, Collins SP, Cotter G, Davison BA, Ezekowitz JA et al (2015) Heart failure therapeutics on the basis of a biased ligand of the angiotensin-2 type 1 receptor. Rationale and design of the BLAST-AHF study (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure). JACC Heart Fail. 3(3):193–201

    Article  PubMed  Google Scholar 

  131. Shen YT, Malik FI, Zhao X, Depre C, Dhar SK, Abarzua P et al (2010) Improvement of cardiac function by a cardiac Myosin activator in conscious dogs with systolic heart failure. Circ Heart Fail 3(4):522–527

    Article  PubMed  Google Scholar 

  132. Anderson RL, Sueoka SH, Rodriguez HM, Lee KH, Cox DR, Kawas R, Morgan BP, Sakowicz R, Morgans DJ Jr, Malik F, Elias KA (2015). In-vitro and in-vivo efficacy of the cardiac myosin activator CK-1827452. https://cytokinetics.com/wp-content/uploads/2015/10/ASCB_1728.pdf (accessed on 9 March 2017)

  133. Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K et al (2011) Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science 331(6023):1439–1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dingemanse J, Clozel M, Van Giersbergen PLM (2002) Pharmacokinetics and pharmacodynamics of tezosentan, an intravenous dual endothelin receptor antagonist, following chronic infusion in healthy subjects. Br J Clin Pharmacol 53(4):355–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. FDA (2001) Natrecor (nesiritide). Prescribing information U.S. approval. (https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020920s031lbl.pdf) Accessed on October 2017.

  136. FDA Samsca (tolvaptan), prescribing information 05/2009. (https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022275s007lbl.pdf). Accessed on October 2017.

  137. EMA. Samsca (tolvaptan). Summary of product characteristics, 08/2009. (http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000980/WC500048716.pdf). Accessed on October 2017.

  138. Monnet E, Chachques JC (2005) Animal models of heart failure: what is new? Ann Thorac Surg 79(4):1445–1453

    Article  PubMed  Google Scholar 

  139. Denayer T, Stöhr T, Roy MV (2014) Animal models in translational medicine: validation and prediction. New Horiz Transl Med 2(1):5–11

    Google Scholar 

  140. Yarbrough WM, Spinale FG (2003) Large animal models of congestive heart failure: a critical step in translating basic observations into clinical applications. J Nucl Cardiol 10(1):77–86

    Article  PubMed  Google Scholar 

  141. Camacho P, Fan H, Liu Z, He JQ (2016) Small mammalian animal models of heart disease. Am J Cardiovasc Dis 6(3):70–80

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Gheorghiade M, Ruschitzka F (2011) Beyond dyspnoea as an endpoint in acute heart failure trials. Eur Heart J 32(12):1442–1445

    Article  PubMed  Google Scholar 

  143. Mebazaa A, Pang PS, Tavares M, Collins SP, Storrow AB, Laribi S, Andre S, Mark Courtney D, Hasa J, Spinar J, Masip J, Frank Peacock W, Sliwa K, Gayat E, Filippatos G, Cleland JG, Gheorghiade M (2010) The impact of early standard therapy on dyspnoea in patients with acute heart failure: the URGENT-dyspnoea study. Eur Heart J 31(7):832–841

    Article  PubMed  Google Scholar 

  144. Pang PS, Cleland JG, Teerlink JR, Collins SP, Lindsell CJ, Sopko G et al (2008 Mar) A proposal to standardize dyspnoea measurement in clinical trials of acute heart failure syndromes: the need for a uniform approach. Eur Heart J 29(6):816–824

    Article  PubMed  Google Scholar 

  145. Collins SP, Pang PS, Lindsell CJ, Kyriacou DN, Storrow AB, Hollander JE, Kirk JD, Miller CD, Nowak R, Peacock WF, Tavares M, Mebazaa A, Gheorghiade M (2010) International variations in the clinical, diagnostic, and treatment characteristics of emergency department patients with acute heart failure syndromes. Eur J Heart Fail 12(11):1253–1260

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fonarow GC, Heywood JT, Heidenreich PA, Lopatin M, Yancy CW (2007) Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 153(6):1021–1028

    Article  PubMed  Google Scholar 

  147. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G et al (2005) Impact of the pulmonary artery catheter in critically ill patients. JAMA 294(13):1664

    Article  PubMed  CAS  Google Scholar 

  148. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W et al (2013) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 2:CD003408

    Google Scholar 

  149. Bourge RC, Abraham WT, Adamson PB, Aaron MF, Aranda JM, Magalski A et al (2008) Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure. J Am Coll Cardiol 51(11):1073–1079

    Article  PubMed  Google Scholar 

  150. Cruz DN, Goh CY, Palazzuoli A, Slavin L, Calabrò A, Ronco C et al (2011) Laboratory parameters of cardiac and kidney dysfunction in cardio-renal syndromes. Heart Fail Rev 16(6):545–551

    Article  PubMed  CAS  Google Scholar 

  151. Boer RAD, Daniels LB, Maisel AS, Januzzi JL (2015) State of the art: newer biomarkers in heart failure. Eur J Heart Fail 17(6):559–569

    Article  PubMed  CAS  Google Scholar 

  152. Maisel AS, Choudhary R (2012) Biomarkers in acute heart failure—state of the art. Nat Rev Cardiol 9(8):478–490

    Article  PubMed  CAS  Google Scholar 

  153. Mallick A, Januzzi JL (2015) Biomarkers in acute heart failure. Rev Esp Cardiol (English Edition) 68(6):514–525

    Google Scholar 

  154. Peacock WF 4th, De Marco T, Fonarow GC, Diercks D, Wynne J, Apple FS et al (2008) Cardiac troponin and outcome in acute heart failure. N Engl J Med 358(20):2117–2126

    Article  PubMed  CAS  Google Scholar 

  155. Horwich TB, Patel J, MacLellan WR, Fonarow GC (2003) Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 108(7):833–838

    Article  PubMed  CAS  Google Scholar 

  156. You JJ, Austin PC, Alter DA, Ko DT, Tu JV (2007) Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am Heart J 153(4):462–470

    Article  PubMed  CAS  Google Scholar 

  157. Metra M, Bettari L, Pagani F, Lazzarini V, Lombardi C, Carubelli V et al (2012) Troponin T levels in patients with acute heart failure: clinical and prognostic significance of their detection and release during hospitalisation. Clin Res Cardiol 101(8):663–672

    Article  PubMed  CAS  Google Scholar 

  158. America HFSO (2006) Section 12: evaluation and management of patients with acute decompensated heart failure. J Card Fail 12(1):e134–e156

    Google Scholar 

  159. Gerber Y, Weston SA, Redfield MM, Chamberlain AM, Manemann SM, Jiang R et al (2015) A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Internal Med 175(6):996

    Article  Google Scholar 

  160. Blair JE, Zannad F, Konstam MA, Cook T, Traver B, Burnett JC Jr, Grinfeld L, Krasa H, Maggioni AP, Orlandi C, Swedberg K, Udelson JE, Zimmer C, Gheorghiade M, EVEREST Investigators (2008) Continental differences in clinical characteristics, management, and outcomes in patients hospitalized with worsening heart failure results from the EVEREST (Efficacy of Vasopressin Antagonism in Heart Failure: Outcome Study with Tolvaptan) program. J Am Coll Cardiol 52(20):1640–1648

    Article  PubMed  Google Scholar 

  161. Nieminen MS, Brutsaert D, Dickstein K, Drexler H, Follath F, Harjola V-P et al (2006) EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J 27(22):2725–2736

    Article  PubMed  Google Scholar 

  162. Davison BA, Metra M, Cotter G, Massie BM, Cleland JG, Dittrich HC et al (2015) Worsening heart failure following admission for acute heart failure. JACC: Heart Failure 3(5):395–403

    PubMed  Google Scholar 

  163. Butler J, Gheorghiade M, Kelkar A, Fonarow GC, Anker S, Greene SJ et al (2015) In-hospital worsening heart failure. Eur J Heart Fail 17(11):1104–1113

    Article  PubMed  Google Scholar 

  164. Cleland JG, Freemantle N, Coletta AP, Clark AL (2005) Clinical trials update from the American Heart Association: REPAIR-AMI, ASTAMI, JELIS, MEGA, REVIVE-II, SURVIVE, and PROACTIVE. Eur J Heart Fail 8(1):105–110

    Article  CAS  Google Scholar 

  165. Teerlink JR, Alburikan K, Metra M, Rodgers JE (2015) Acute decompensated heart failure update. Curr Cardiol Rev 11(1):53–62

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cotter G, Dittrich HC, Weatherley BD, Bloomfield DM, Oconnor CM, Metra M et al (2008) The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail 14(8):631–640

    Article  PubMed  CAS  Google Scholar 

  167. Adams KF, Fonarow GC, Emerman CL, Lejemtel TH, Costanzo MR, Abraham WT et al (2005) Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 149(2):209–216

    Article  PubMed  Google Scholar 

  168. Fang J, Mensah GA, Croft JB, Keenan NL (2008) Heart failure-related hospitalization in the U.S., 1979 to 2004. J Am Coll Cardiol 52(6):428–434

    Article  PubMed  Google Scholar 

  169. Packer M, O'Connor C, McMurray JJV, Wittes J, Abraham WT, Anker SD, Dickstein K, Filippatos G, Holcomb R, Krum H, Maggioni AP, Mebazaa A, Peacock WF, Petrie MC, Ponikowski P, Ruschitzka F, van Veldhuisen DJ, Kowarski LS, Schactman M, Holzmeister J, TRUE-AHF Investigators (2017) Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med 376(20):1956–1964

    Article  PubMed  CAS  Google Scholar 

  170. FDA (2017). Multiple endpoints in clinical trials guidance for industry. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (accessed on 4 Jan 2018)

  171. Neaton JD, Gray G, Zuckerman BD, Konstam MA (2005) Key issues in endpoint selection for heart failure trials: composite endpoints. J Card Fail 11(8):567–575

    Article  PubMed  Google Scholar 

  172. Ferreira-Gonzalez I, Permanyer-Miralda G, Domingo-Salvany A, Busse JW, Heels-Ansdell D, Montori VM et al (2007) Problems with use of composite endpoints in cardiovascular trials: systematic review of randomised controlled trials. BMJ 334(7597):786

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ziaeian B, Fonarow GC (2013) Heart failure clinical trials: how do we define success? Nat Rev Cardiol 10:492–494

    Article  PubMed  PubMed Central  Google Scholar 

  174. Felker GM, Anstrom KJ, Rogers JG (2008) A global ranking approach to endpoints in trials of mechanical circulatory support devices. J Card Fail 14(5):368–372

    Article  PubMed  Google Scholar 

  175. Brass E, Lewis R, Lipicky R, Murphy J, Hiatt W (2006) Risk assessment in drug development for symptomatic indications: a framework for the prospective exclusion of unacceptable cardiovascular risk. Clin Pharmacol Ther 79(3):165–172

    Article  PubMed  CAS  Google Scholar 

  176. Jose P, Tomson C, Skali H, Rouleau J, Braunwald E, Arnold JM, Cuddy T, Sussex B, Bernstein V, Pfeffer M, Solomon S (2006) Influence of proteinuria on cardiovascular risk and response to angiotensin-converting enzyme inhibition after myocardial infarction. J Am Coll Cardiol 47(8):1725–1727

    Article  PubMed  Google Scholar 

  177. Samsky MD, Dunning A, Devore AD, Schulte PJ, Starling RC, Tang WW et al (2015) Liver function tests in patients with acute heart failure and associated outcomes: insights from ASCEND-HF. Eur J Heart Fail 18(4):424–432

    Article  PubMed  CAS  Google Scholar 

  178. Committee for Medicinal Products for Human Use, European Medicines Agency (2015) Note for guidance on clinical investigation of medicinal products for the treatment of cardiac failure: addendum on acute cardiac failure (CPMP/EWP/2986/03, Rev1) Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/06/WC500187797.pdf. Accessed on November 2017

  179. Pani L, Pecorelli S, Rosano G, Anker SD, Peracino A, Fregonese L et al (2015) Steps forward in regulatory pathways for acute and chronic heart failure. Eur J Heart Fail 17(1):3–8

    Article  PubMed  Google Scholar 

  180. EMEA (1994). ICH-E4, Dose-response information to support Drug Registration. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002834.pdf (accessed on 11 July 2017)

  181. FDA (2003). Exposure-response relationships design, data analysis and regulatory applications study. https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/default.ht (accessed on 2 January 2018)

  182. Tucker GT (2016) Personalized drug dosage–closing the loop. Pharm Res 34(8):1539–1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Teneggi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teneggi, V., Sivakumar, N., Chen, D. et al. Drugs’ development in acute heart failure: what went wrong?. Heart Fail Rev 23, 667–691 (2018). https://doi.org/10.1007/s10741-018-9707-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9707-y

Keywords

Navigation