Skip to main content

Advertisement

Log in

A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The function of the heart is defined by its ability to deliver adequate cardiac output to meet the requirements of the body both at rest and with exertion. To fill this role, the heart demonstrates an impressive capacity to tightly regulate energy generation and consumption. Energy production and transfer within cardiac myocytes primarily relies on the process of oxidative phosphorylation. In the failing heart, there is an imbalance between the work of the cardiac system and the energy required to generate this work. This presence of this mismatch has given rise to the concept known as the energy starvation theory. This concept encapsulates observations such as perturbed substrate consumption, insufficient energy transfer and ingestion, reduced substrate and oxygen availability, and diminished energy production in the failing heart. Diminished available cellular energy may further result from a reduction in the biosynthesis of mitochondria and their protein synthesis and from global cellular architectural disarray. In essence, the energy starvation theory posits that cardiac pump function declines due to a reduction in oxygen and substrate availability, and thus leads to a total body starvation of systemic energy. This novel cognitive framework has led to encouraging new directions in a “metabolic therapeutic approach” for the failing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145

    Article  CAS  PubMed  Google Scholar 

  2. Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  4. Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophy Acta 1813:1360–1372

    Article  CAS  Google Scholar 

  5. Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cotter DG, Schugar RC, Crawford PA (2013) Ketone body metabolism and cardiovascular diseases. Am J Physiol Heart Circ Physiol 304:H1060–H1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drake KJ, Sidorov VY, McGuinness OP, Wasserman DH, Wikswo JP (2012) Amino acids as metabolic substrates during cardiac ischemia. Exp Bio Med 237:1369–1378

    Article  CAS  Google Scholar 

  8. Taegtmeyer H (2002) Switching metabolic genes to build a better heart. Circulation 106:2043–2045

    Article  PubMed  Google Scholar 

  9. Rimbaud S et al (2009) Stimulus specific changes of energy metabolism in hypertrophied heart. J Mol Cell Cardiol 46:952–959

    Article  CAS  PubMed  Google Scholar 

  10. Osorio JC et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612

    Article  CAS  PubMed  Google Scholar 

  11. Lei B et al (2004) Paradoxical down-regulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36:567–576

    Article  CAS  PubMed  Google Scholar 

  12. Razeghi P et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  CAS  PubMed  Google Scholar 

  13. Leong HS, Brownsey RW, Kulpa JE, Allard MF (2003) Glycolysis and pyruvate oxidation in cardiac hypertrophy—why so unbalanced? Comp Biochem Physiol Part A Mole Integr Physiol 135:499–513

    Article  CAS  Google Scholar 

  14. Benard G et al (2010) Multisite control and regulation of mitochondrial energy production. Biochim Biophys Acta 1797:698–709

    Article  CAS  PubMed  Google Scholar 

  15. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis. The central role of PGC-1α. Cardiovasc Res 79:208–217

    Article  CAS  PubMed  Google Scholar 

  16. Riehle C, Wende AR, Zaha VG et al (2011) PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Cir Res 109:783–793

    Article  CAS  Google Scholar 

  17. Bugger H et al (2010) Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovasc Res 85:376–384

    Article  CAS  PubMed  Google Scholar 

  18. Ide T et al (2001) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88:529–535

    Article  CAS  PubMed  Google Scholar 

  19. Garnier A et al (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scheubel RJ et al (2002) Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol 40:2174–2181

    Article  CAS  PubMed  Google Scholar 

  21. Sebastiani M et al (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369

    Article  CAS  PubMed  Google Scholar 

  22. Karamanlidis G et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suematsu N et al (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423

    Article  CAS  PubMed  Google Scholar 

  24. Tsutsui H, Ide T, Kinugawa S (2006) Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal 8:1737–1744

    Article  CAS  PubMed  Google Scholar 

  25. Matsushima S et al (2006) Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 113:1779–1786

    Article  CAS  PubMed  Google Scholar 

  26. Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    Article  CAS  PubMed  Google Scholar 

  27. Rocher C et al (2008) Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases. J Bioenerg Biomembr 40:59–67

    Article  CAS  PubMed  Google Scholar 

  28. Ikeuchi M et al (2005) Overexpression of mitochondrial transcription factor ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112:683–690

    Article  CAS  PubMed  Google Scholar 

  29. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodeling. Cardiovasc Res 81:449–456

    Article  CAS  PubMed  Google Scholar 

  30. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318

    Article  CAS  PubMed  Google Scholar 

  31. Baker MJ, Frazier AE, Gulbis JM, Ryan MT (2007) Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol 17:456–464

    Article  CAS  PubMed  Google Scholar 

  32. Mac Kenzie JA, Payne RM (2007) Mitochondrial protein import and human health and disease. Biochim Biophys Acta 1772:509–523

    Article  CAS  Google Scholar 

  33. Dabkowski ER et al (2010) Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially-distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol 299:H529–H540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hatch GM (2004) Cell biology of cardiac mitochondrial phospholipids. Biochem Cell Biol 82:99–112

    Article  CAS  PubMed  Google Scholar 

  35. Chicco AJ, Sparagna GC (2006) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    Article  PubMed  CAS  Google Scholar 

  36. Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506

    Article  CAS  PubMed  Google Scholar 

  37. Athea Y et al (2007) AMP-activated protein kinase {alpha} 2 deficiency affects cardiac cardiolipin homeostasis and mitochondrial function. Diabetes 56:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription co-activators. Cell Metab 1:361–370

    Article  PubMed  CAS  Google Scholar 

  39. Wang P et al (2010) Peroxisome proliferator-activated receptor delta is an essential transcriptional regulator for mitochondrial protection and biogenesis in adult heart. Circ Res 106:911–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203

    Article  CAS  PubMed  Google Scholar 

  41. Huss JM, Torra IP, Staels B, Giguere V, Kelly DP (2004) Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 24:9079–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lai L et al (2008) Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev 22:1948–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garnier A et al (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52

    Article  CAS  PubMed  Google Scholar 

  44. Soriano FX et al (2006) Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55:1783–1791

    Article  CAS  PubMed  Google Scholar 

  45. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  CAS  PubMed  Google Scholar 

  46. Ong SB et al (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022

    Article  CAS  PubMed  Google Scholar 

  47. Joubert F et al (2008) Local energetic regulation of sarcoplasmic and myosin ATPase is differently impaired in rats with heart failure. J Physiol 586:5181–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Witt H et al (2008) Sex-specific pathways in early cardiac response to pressure overload in mice. J Mol Med 86:1013–1024

    Article  PubMed  PubMed Central  Google Scholar 

  49. Watson PA et al (2007) Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. Am J Physiol Heart Circ Physiol 293:H246–H259

    Article  CAS  PubMed  Google Scholar 

  50. Faerber G et al (2011) Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor gamma co-activator levels and mitochondrial dysfunction. J Thorac Cardiovasc Surg 141:492–500

    Article  CAS  PubMed  Google Scholar 

  51. Garnier A et al (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail 2:342–350

    Article  CAS  PubMed  Google Scholar 

  52. Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ (2008) PGC-1alpha and ERRalpha target gene down regulation is a signature of the failing human heart. J Mol Cell Cardiol 46:201–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Huss JM et al (2007) The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab 6:25–37

    Article  CAS  PubMed  Google Scholar 

  54. Ventura-Clapier R, Kuznetsov A, Veksler V, Boehm E, Anflous K (1998) Functional coupling of creatine kinases in muscles: species and tissue specificity. Mol Cell Biochem 184:231–247

    Article  CAS  PubMed  Google Scholar 

  55. Arany Z et al (2005) Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 1:259–271

    Article  CAS  PubMed  Google Scholar 

  56. Lehman JJ et al (2008) The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. Am J Physiol Heart Circ Physiol 295:H185–H196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dufour CR et al (2007) Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab 5:345–356

    Article  CAS  PubMed  Google Scholar 

  58. Twig G et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saito T, Sadoshima J (2015) Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res 116:1477–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Knowlton AA, Liu TT (2016) Mitochondrial dynamics and heart failure. Compr Physiol 6:507–526

    Google Scholar 

  61. Saks VA et al (2001) Intracellular energetic units in red muscle cells. Biochem J 356:643–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saks V et al (2006) Cardiac system bioenergetics: metabolic basis of Frank-Starling law. J Physiol 571:253–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guzun R, Saks V (2010) Application of the principles of systems biology and Wiener’s cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo. Int J Mol Sci 11:982–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shimizu J, Todaka K, Burkhoff D (2002) Load dependence of ventricular performance explained by model of calcium-myofilament interactions. Am J Physiol Heart Circ Physiol 282:H1081–H1091

    Article  CAS  PubMed  Google Scholar 

  65. Balaban RS (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34:1259–1271

    Article  CAS  PubMed  Google Scholar 

  66. Weiss JN, Korge P (2001) The cytoplasm: no longer a well-mixed bag. Circ Res 89:108–110

    CAS  PubMed  Google Scholar 

  67. Weiss J, Hiltbrand B (1985) Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 75:436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Saks VA et al (2004) Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 256–257:185–199

    Article  PubMed  Google Scholar 

  69. Rostovtseva TK et al (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 105:18746–18751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kay L et al (1997) Study of regulation of mitochondrial respiration in vivo, an analysis of influence of ADP diffusion and possible role of cytoskeleton. Biochim Biophys Acta 1322:41–59

    Article  CAS  PubMed  Google Scholar 

  71. Gong G et al (2003) Oxidative capacity in failing hearts. Am J Phys 285:H541–H548

    CAS  Google Scholar 

  72. Jarreta D et al (2000) Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res 45:860–865

    Article  CAS  PubMed  Google Scholar 

  73. Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52:103–110

    Article  CAS  PubMed  Google Scholar 

  74. Liu J et al (2001) Mitochondrial ATPase and high-energy phosphates in failing hearts. Am J Physiol Heart Circ Physiol 281:H1319–H1326

    CAS  PubMed  Google Scholar 

  75. Cieniewski-Bernard C et al (2008) Proteomic analysis of left ventricular remodeling in an experimental model of heart failure. J Proteome Res 7:5004–5016

    Article  CAS  PubMed  Google Scholar 

  76. Gao Z et al (2008) Key pathways associated with heart failure development revealed by gene networks correlated with cardiac remodeling. Physiol Genomics 35:222–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao Z et al (2006) Transcriptomic profiling of the canine tachycardia-induced heart failure model: global comparison to human and murine heart failure. J Mol Cell Cardiol 40:76–86

    Article  CAS  PubMed  Google Scholar 

  78. Murray AJ et al (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44:694–700

    Article  CAS  PubMed  Google Scholar 

  79. Lisa FD, Bernardi P (2009) A CaPful of mechanisms regulating the mitochondrial permeability transition. J Mol Cell Cardiol 46:775–780

    Article  PubMed  CAS  Google Scholar 

  80. Marcil M et al (2006) Compensated volume overload increases the vulnerability of heart mitochondria without affecting their functions in the absence of stress. J Mol Cell Cardiol 41:998–1009

    Article  CAS  PubMed  Google Scholar 

  81. Sousa ED et al (2002) Cardiac and skeletal muscle energy metabolism in heart failure: beneficial effects of voluntary activity. Cardiovasc Res 56:260–268

    Article  PubMed  Google Scholar 

  82. Boudina S et al (2002) Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart. Am J Physiol Heart Circ Physiol 282:H821–H831

    Article  CAS  PubMed  Google Scholar 

  83. Zoll J et al (2006) ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. J Appl Physiol 101:385–391

    Article  CAS  PubMed  Google Scholar 

  84. Belmadani S, Pous C, Ventura-Clapier R, Fischmeister R, Mery PF (2002) Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem 237:39–46

    Article  CAS  PubMed  Google Scholar 

  85. Akki A, Gupta A, Weiss RG (2013) Magnetic resonance imaging and spectroscopy of the murine cardiovascular system. Am J Physiol Heart Circ Physiol 304(5):H633–H648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chacko VP, Aresta F, Chacko SM, Weiss RG (2000) MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol 279(5):H2218–H2224

    CAS  PubMed  Google Scholar 

  87. Gupta A, Chacko VP, Schär M, Akki A, Weiss RG (2011) Impaired ATP kinetics in failing in vivo mouse heart. Circ Cardiovasc Imaging 4(1):42–50

    Article  CAS  PubMed  Google Scholar 

  88. Gupta A et al (2012) Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J Clin Invest 122(1):291–302

    Article  CAS  PubMed  Google Scholar 

  89. Gupta A, Chacko VP, Weiss RG (2009) Abnormal energetics and ATP depletion in pressure-overload mouse hearts: in vivo high-energy phosphate concentration measures by noninvasive magnetic resonance. Am J Physiol Heart Circ Physiol 297:H59–H64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gupta A et al (2013) Creatine kinase-overexpression improves myocardial energetics, contractile dysfunction and survival in murine doxorubicin cardiotoxicity. PLoS One 8(10):e74675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akki A et al (2012) Creatine kinase over-expression improves ATP kinetics and contractile function in post-ischemic myocardium. Am J Physiol Heart Circ Physiol 303:H844–H852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Neubauer S et al (1995) Impairment of energy metabolism inintact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 95:1092–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ye Y, Gong G, Ochiai K, Liu J, Zhang J (2001) High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation 103:1570–1576

    Article  CAS  PubMed  Google Scholar 

  94. Weiss RG, Gerstenblith G, Bottomley PA (2005) ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A 102(3):808–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG (2006) Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation 114(11):1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122:795–801

    Article  CAS  PubMed  Google Scholar 

  97. Conway MA et al (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by P-31 magnetic resonance spectroscopy. Lancet 338:973–976

    Article  CAS  PubMed  Google Scholar 

  98. Neubauer S et al (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary heart disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86:1810–1818

    Article  CAS  PubMed  Google Scholar 

  99. Ingwall JS (2009) Energy metabolism in heart failure and remodeling. Cardiovasc Res 81:412–419

    Article  CAS  PubMed  Google Scholar 

  100. Beer M et al (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274

    Article  CAS  PubMed  Google Scholar 

  101. Neubauer S et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  CAS  PubMed  Google Scholar 

  102. Crilley JG et al (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41:1776–1782

    Article  CAS  PubMed  Google Scholar 

  103. Tian R, Nascimben L, Ingwall JS, Lorell BH (1997) Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 96:1313–1319

    Article  CAS  PubMed  Google Scholar 

  104. Bessman SP, Geiger PJ (1981) Transport of energy in muscle: the phosphoryl creatine shuttle. Science 211:448–452

    Article  CAS  PubMed  Google Scholar 

  105. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands—the phosphocreatine circuit for cellular energy homeostasis. Biochem J 281:21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    Article  CAS  PubMed  Google Scholar 

  107. Akki A et al (2014) Skeletal muscle ATP kinetics are impaired in frail mice. Age 36:21–30

    Article  CAS  PubMed  Google Scholar 

  108. Wyss M, Smeitink J, Wevers RA, Wallimann T (1992) Mitochondrial creatine kinase—a key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102:119–166

    Article  CAS  PubMed  Google Scholar 

  109. Ventura-Clapier R, Veksler V, Hoerter JA (1994) Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem 133:125–144

    Article  PubMed  Google Scholar 

  110. Saks V et al (2010) Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome. Biochim Biophys Acta 1797:678–697

    Article  CAS  PubMed  Google Scholar 

  111. Joubert F, Hoerter JA, Mazet JL (2002) Modeling the energy transfer pathways. Creatine kinase activities and heterogeneous distribution of ADP in the perfused heart. Mol Biol Rep 29:177–182

    Article  CAS  PubMed  Google Scholar 

  112. Joubert F, Mazet JL, Mateo P, Hoerter JA (2002) 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways. J Biol Chem 277:18469–18476

    Article  CAS  PubMed  Google Scholar 

  113. Ingwall JS, Atkinson DE, Clarke K, Fetters JK (1990) Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J 11:108–115

    Article  CAS  PubMed  Google Scholar 

  114. Sylven C, Lin L, Kallner A, Sotonyi P, Somogyi E, Jansson E (1991) Dynamics of creatine kinase shuttle enzymes in the human heart. Eur J Clin Investig 21:350–354

    Article  CAS  Google Scholar 

  115. Hove MT, Neubauer S (2007) MR spectroscopy in heart failure—clinical and experimental findings. Heart Fail Rev 12:48–57

    Article  PubMed  Google Scholar 

  116. Joubert F, Gillet B, Mazet JL, Mateo P, Beloeil J, Hoerter JA (2000) Evidence for myocardial ATP compartmentation from NMR inversion transfer analysis of creatine kinase fluxes. Biophys J 79:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. van der Vusse GJ, van Bilsen M, Glatz JF (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45:279–293

    Article  PubMed  Google Scholar 

  118. Glatz JF, Luiken JJ, Bonen A (2001) Involvement of membrane-associated proteins in the acute regulation of cellular fatty acid uptake. J Mol Neurosci 16:123–132

    Article  CAS  PubMed  Google Scholar 

  119. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  CAS  PubMed  Google Scholar 

  120. Banke NH et al (2010) Preferential oxidation of triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor PPARalpha. Circ Res 107:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koves TR et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    Article  CAS  PubMed  Google Scholar 

  122. Cook GA et al (2001) Differential regulation of carnitine palmitoyltransferase-I gene isoforms (CPT-I alpha and CPT-I beta) in the rat heart. J Mol Cell Cardiol 33:317–329

    Article  CAS  PubMed  Google Scholar 

  123. Sorokina N et al (2007) Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115:2033–2041

    Article  CAS  PubMed  Google Scholar 

  124. Zammit VA, Fraser F, Orstorphine CG (1997) Regulation of mitochondrial outermembrane carnitine palmitoyltransferase (CPT I): role of membrane-topology. Adv Enzym Regul 37:295–317

    Article  CAS  Google Scholar 

  125. Hamilton C, Saggerson ED (2000) Malonyl-CoA metabolism in cardiac myocytes. Biochem J 350(pt 1):61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dyck JR et al (2006) Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 114:1721–1728

    Article  CAS  PubMed  Google Scholar 

  127. Zhou L et al (2008) Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. Am J Physiol Heart Circ Physiol 294:H954–H960

    Article  CAS  PubMed  Google Scholar 

  128. Kato T et al (2010) Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 3:420–430

    Article  PubMed  Google Scholar 

  129. Doenst T et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86:461–470

    Article  CAS  PubMed  Google Scholar 

  130. Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R (2001) Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52:407–416

    Article  CAS  PubMed  Google Scholar 

  131. Heather LC et al (2006) Fatty acid transporter levels and palmitate oxidation rate correlate with ejection fraction in the infarcted rat heart. Cardiovasc Res 72:430–437

    Article  CAS  PubMed  Google Scholar 

  132. Akki A, Smith K, Seymour AM (2008) Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol Cell Biochem 311:215–224

    Article  CAS  PubMed  Google Scholar 

  133. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Phys 267:H742–H750

    CAS  Google Scholar 

  134. Christe ME, Rodgers RL (1994) Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 26:1371–1375

    Article  CAS  PubMed  Google Scholar 

  135. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842

    Article  CAS  PubMed  Google Scholar 

  136. Aerni-Flessner L, Abi-Jaoude M, Koenig A, Payne M, Hruz PW (2012) GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc Diabetol 11:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abel ED (2004) Glucose transport in the heart. Front Biosci 9:201–215

    Article  CAS  PubMed  Google Scholar 

  138. Entman ML, Bornet EP, Van Winkle WB, Goldstein MA, Schwartz A (1977) Association of glycogenolysis with cardiac sarcoplasmic reticulum, II: effect of glycogen depletion, deoxycholate solubilization and cardiac ischemia: evidence for a phorphorylase kinase membrane complex. J Mol Cell Cardiol 9:515–528

    Article  CAS  PubMed  Google Scholar 

  139. Kusuoka H, Marban E (1994) Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium? J Clin Invest 93:1216–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Des Rosiers C, Labarthe F, Lloyd SG, Chatham JC (2011) Cardiac anaplerosis in health and disease: food for thought. Cardiovasc Res 90:210–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Russell RR 3rd, Taegtmeyer H (1991) Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest 87:384–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhabyeyev P et al (2013) Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res 97:676–685

    Article  CAS  PubMed  Google Scholar 

  143. Amorim PA et al (2010) Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. J Thorac Cardiovasc Surg 140:1160–1167

    Article  CAS  PubMed  Google Scholar 

  144. Degens H et al (2006) Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res Cardiol 101:17–26

    Article  CAS  PubMed  Google Scholar 

  145. Dai DF et al (2012) Mitochondrial proteome remodeling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res 93:79–88

    Article  CAS  PubMed  Google Scholar 

  146. Dodd MS et al (2012) In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res 95:69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dávila-Román VG et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40:271–277

    Article  PubMed  Google Scholar 

  148. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients: the heart outcomes prevention evaluation study investigators. N Engl J Med 342:154–160

    Article  CAS  PubMed  Google Scholar 

  149. Lonn E et al (2005) HOPE and HOPE-TOO trial investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293:1338–1347

    Article  PubMed  Google Scholar 

  150. Dai DF et al (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dai DF et al (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Redox signaling in cardiac physiology and pathology. Circ Res 111:1091–1106

    Article  CAS  PubMed  Google Scholar 

  153. Schönfeld P, Wojtczak L (2007) Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport. Biochim Biophys Acta 1767:1032–1040

    Article  PubMed  CAS  Google Scholar 

  154. Opie LH, Knuuti J (2009) The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol 54:1637–1646

    Article  CAS  PubMed  Google Scholar 

  155. Krishnan J et al (2009) Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9:512–524

    Article  CAS  PubMed  Google Scholar 

  156. Gupte SA et al (2006) Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart. J Mol Cell Cardiol 41:340–349

    Article  CAS  PubMed  Google Scholar 

  157. Hecker PA et al (2013) Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 6:118–126

    Article  CAS  PubMed  Google Scholar 

  158. Du XL et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97:12222–12226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Facundo HT et al (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 302:H2122–H2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wilkins BJ et al (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118

    Article  CAS  PubMed  Google Scholar 

  161. Watson LJ et al (2010) O-linked β-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci U S A 107:17797–17802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Heling A et al (2000) Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86:846–853

    Article  CAS  PubMed  Google Scholar 

  163. Schneider AG, Sultan KR, Pette D (1999) Muscle LIM protein: expressed in slow muscle and induced in fast muscle by enhanced contractile activity. Am J Phys 276:C900–C906

    CAS  Google Scholar 

  164. Veksler VI et al (1995) Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J Biol Chem 270:19921–19929

    Article  CAS  PubMed  Google Scholar 

  165. Appaix F et al (2003) Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88:175–190

    Article  CAS  PubMed  Google Scholar 

  166. Kaasik A et al (2001) Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89:153–159

    Article  CAS  PubMed  Google Scholar 

  167. Mekhfi H et al (1990) Myocardial adaptation to creatine deficiency in rats fed with beta-guanidino propionic acid, a creatine analogue. Am J Phys 258:H1151–H1158

    CAS  Google Scholar 

  168. Arber S et al (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403

    Article  CAS  PubMed  Google Scholar 

  169. Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150:1283–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Boehm E, Ventura-Clapier R, Mateo P, Lechene P, Veksler V (2000) Glycolysis supports calcium uptake by the sarcoplasmic reticulum in skinned ventricular fibers of mice deficient in mitochondrial and cytosolic creatine kinase. J Mol Cell Cardiol 32:891–902

    Article  CAS  PubMed  Google Scholar 

  171. Saks V et al (2003) Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 84:3436–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gupta A, Gupta S, Young D, Das B, McMahon J, Sen S (2010) Impairment of ultrastructure and cytoskeleton during progression of cardiac hypertrophy to heart failure. Lab Investig 90:520–530

    Article  CAS  PubMed  Google Scholar 

  173. Hein S, Kostin S, Heling A, Maeno Y, Schaper J (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45:273–278

    Article  CAS  PubMed  Google Scholar 

  174. Cooper G (2006) Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol 291:H1003–H1014

    Article  CAS  PubMed  Google Scholar 

  175. van den Bosch BJ et al (2005) Regional absence of mitochondria causing energy depletion in the myocardium of muscle LIM protein knockout mice. Cardiovasc Res 65:411–418

    Article  PubMed  CAS  Google Scholar 

  176. Schaper J et al (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514

    Article  CAS  PubMed  Google Scholar 

  177. Sabbah HN et al (1992) Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 24:1333–1347

    Article  CAS  PubMed  Google Scholar 

  178. Chen L, Knowlton AA (2010) Mitochondria and heart failure: new insights into an energetic problem. Minerva Cardioangiol 58:213–229

    CAS  PubMed  PubMed Central  Google Scholar 

  179. van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ (2008) Metabolic remodeling of the failing heart: beneficial or detrimental? Cardiovasc Res 81:420–428

    Article  PubMed  CAS  Google Scholar 

  180. Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mori J et al (2012) Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail 5:493–503

    Article  CAS  PubMed  Google Scholar 

  182. Pellieux C et al (2006) Overexpression of angiotensinogen in the myocardium induces downregulation of the fatty acid oxidation pathway. J Mol Cell Cardiol 41:459–466

    Article  CAS  PubMed  Google Scholar 

  183. Pellieux C, Montessuit C, Papageorgiou I, Lerch R (2009) Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-alpha. Cardiovasc Res 82:341–350

    Article  CAS  PubMed  Google Scholar 

  184. Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171:2080–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vermes E et al (2003) Studies of left ventricular dysfunction. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the studies of left ventricular dysfunction (SOLVD). Circulation 107:1291–1296

    Article  CAS  PubMed  Google Scholar 

  186. Yusuf S et al (2005) Candesartan in heart failure-assessment of reduction in mortality and morbidity program investigators. Effects of candesartan on the development of a new diagnosis of diabetes mellitus in patients with heart failure. Circulation 112:48–53 2005. Erratum in: Circulation 112: e292

    Article  CAS  PubMed  Google Scholar 

  187. Wallhaus TR, Taylor M, De Grado TR, Russell DC (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103:2441–2446

    Article  CAS  PubMed  Google Scholar 

  188. Spoladore R et al (2013) Beneficial effects of beta-blockers on left ventricular function and cellular energy reserve in patients with heart failure. Fundam Clin Pharmacol 27:455–464

    Article  CAS  PubMed  Google Scholar 

  189. Christenson SD et al (2008) Effects of simultaneous and optimized sequential cardiac resynchronization therapy on myocardial oxidative metabolism and efficiency. J Cardiovasc Electrophysiol 19:125–132

    Article  PubMed  Google Scholar 

  190. Kitaizumi K et al (2008) Positron emission tomographic demonstration of myocardial oxidative metabolism a case of left ventricular restoration after cardiac resynchronization therapy. Circ J 72:1900–1903

    Article  PubMed  Google Scholar 

  191. Agnetti G et al (2010) Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dys-synchronous failing hearts. Circ Cardiovasc Genet 3:78–87

    Article  CAS  PubMed  Google Scholar 

  192. Sajgalik P et al (2016) Current status of left ventricular assist device therapy. Mayo Clin Proc 91(7):927–940

    Article  PubMed  Google Scholar 

  193. de Brouwer KF et al (2006) Specific and sustained down-regulation of genes involved in fatty acid metabolism is not a hallmark of progression to cardiac failure in mice. J Mol Cell Cardiol 40:838–845

    Article  PubMed  CAS  Google Scholar 

  194. Lionetti V, Stanley WC, Recchia FA (2011) Modulating fatty acid oxidation in heart failure. Cardiovac Res 90:202–209

    Article  CAS  Google Scholar 

  195. Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Gupta.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Houston, B. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition. Heart Fail Rev 22, 825–842 (2017). https://doi.org/10.1007/s10741-017-9623-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9623-6

Keywords

Navigation