Skip to main content
Log in

MR, CT, and PET imaging in pericardial disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although echocardiography remains the standard diagnostic tool for identifying pericardial diseases, procedures with better delineation of morphology and heart function are often required. The pericardium consists of an inner visceral (epicardium) and outer parietal layer (pericardium), which constitute for the pericardial cavity. Pericardial effusion can occur as transudate, exudate, pyopneumopericardium, or hemopericardium. Potential causes are inflammatory processes, that is, pericarditis due to autoimmune or infective reasons, neoplasms, irradiation, or systemic disorders, chronic renal failure, endocrine, or metabolic diseases. Pericardial fat can mimic pericardial effusion. Using various image-acquisition sequences, MRI allows identifying and separating fluid and solid structures. Fast spin-echo T1-weighted sequences with black-blood preparation are favourably used for morphological evaluation. Fast spin-echo T2-weighted sequences, particularly with fat saturation, and short-tau inversion-recovery sequences are useful to visualize oedema and inflammation. For further tissue characterization, delayed inversion-recovery imaging is used. Therefore, image acquisition is performed at 5–20 min subsequent to contrast agent administration, the so-called technique of late gadolinium enhancement. Ventricular volumes and myocardial mass can be assessed accurately by steady-state free-precession sequences, which is required to measure cardiac function and ventricular wall stress. Constrictive pericarditis usually results from chronic inflammatory processes leading to increased stiffness, which impedes the slippage of both pericardial layers and thereby the normal cardiac filling. CT imaging can favourably assess pericardial calcification. Thus, MR and CT imaging allow a comprehensive delineation of the pericardium. Superior to echocardiography, both methods provide a larger field of view and depiction of the complete chest including abnormalities of the surrounding mediastinum and lungs. PET provides unique information on the in vivo metabolism of 18-fluorodeoxyglucose that can be superimposed on CT findings and is useful for identifying inflammatory processes or masses, for example neoplasms. These imaging techniques provide advanced information of anatomy and cardiac function to optimize the pericardial access, for example by the AttachLifter system, for diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bull RK, Edwards PD, Dixon AK (1998) CT dimensions of the normal pericardium. Br J Radiol 71(849):923–925

    PubMed  CAS  Google Scholar 

  2. Truong MT, Erasmus JJ, Gladish GW, Sabloff BS, Marom EM, Madewell JE, Chasen MH, Munden RF (2003) Anatomy of pericardial recesses on multidetector CT: implications for oncologic imaging. AJR Am J Roentgenol 181(4):1109–1113

    Article  PubMed  Google Scholar 

  3. Bogaert J, Duerinckx AJ (1995) Appearance of the normal pericardium on coronary MR angiograms. J Magn Reson Imaging 5(5):579–587

    Article  PubMed  CAS  Google Scholar 

  4. Delille JP, Hernigou A, Sene V, Chatellier G, Boudeville JC, Challande P, Plainfosse MC (1999) Maximal thickness of the normal human pericardium assessed by electron-beam computed tomography. Eur Radiol 9(6):1183–1189

    Article  PubMed  CAS  Google Scholar 

  5. Talreja DR, Edwards WD, Danielson GK, Schaff HV, Tajik AJ, Tazelaar HD, Breen JF, Oh JK (2003) Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation 108(15):1852–1857

    Article  PubMed  Google Scholar 

  6. Kanna B, Osorio F, Dharmarajan L (2006) Pericardial fat mimicking pericardial effusion on two-dimensional echocardiography. Echocardiography 23(5):400–402

    Article  PubMed  Google Scholar 

  7. Alter P, Rupp H, Rominger MB, Vollrath A, Czerny F, Klose KJ, Maisch B (2007) Relation of B-type natriuretic peptide to left ventricular wall stress as assessed by cardiac magnetic resonance imaging in patients with dilated cardiomyopathy. Can J Physiol Pharmacol 85(8):790–799

    Article  PubMed  CAS  Google Scholar 

  8. Alter P, Rupp H, Rominger MB, Klose KJ, Maisch B (2008) A new methodological approach to assess cardiac work by pressure-volume and stress-length relations in patients with aortic valve stenosis and dilated cardiomyopathy. Pflugers Arch 455(4):627–636

    Article  PubMed  CAS  Google Scholar 

  9. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  PubMed  CAS  Google Scholar 

  10. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM (2002) Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation 105(2):224–229

    Article  PubMed  Google Scholar 

  11. Schelbert EB, Hsu LY, Anderson SA, Mohanty BD, Karim SM, Kellman P, Aletras AH, Arai AE (2010) Late gadolinium-enhancement cardiac magnetic resonance identifies postinfarction myocardial fibrosis and the border zone at the near cellular level in ex vivo rat heart. Circ Cardiovasc Imaging 3(6):743–752

    Google Scholar 

  12. Alpendurada F, Pennell DJ (2008) Late gadolinium enhancement in cardiomyopathy. Int J Cardiovasc Imaging 24(6):613–615

    Article  PubMed  CAS  Google Scholar 

  13. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, Webb J, Kulkarni M, Dawson D, Sulaibeekh L, Chandrasekaran B, Bucciarelli-Ducci C, Pasquale F, Cowie MR, McKenna WJ, Sheppard MN, Elliott PM, Pennell DJ, Prasad SK (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):867–874

    Article  PubMed  Google Scholar 

  14. Alter P, Rupp H, Adams P, Stoll F, Figiel JH, Klose KJ, Rominger MB, Maisch B (2011) Occurrence of late gadolinium enhancement is associated with increased left ventricular wall stress and mass in patients with non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 13(9):937–944

    Article  PubMed  Google Scholar 

  15. Rominger MB, Bachmann GF, Pabst W, Rau WS (1999) Right ventricular volumes and ejection fraction with fast cine MR imaging in breath-hold technique: applicability, normal values from 52 volunteers, and evaluation of 325 adult cardiac patients. J Magn Reson Imaging 10(6):908–918

    Article  PubMed  CAS  Google Scholar 

  16. Rominger MB, Kluge A, Dinkel HP, Bachmann GF (2002) Comparison between biventricular cine MRI and MR flow quantification in ascending aorta and pulmonary outflow tract for the assessment of intracardial shunt volumes. Rofo 174(11):1380–1386

    Article  PubMed  CAS  Google Scholar 

  17. Bogabathina H, Biederman RW (2011) Lack of slippage by cardiovascular magnetic resonance imaging is sine qua non for constrictive pericarditis. Circulation 123(16):e418–e419

    Article  PubMed  Google Scholar 

  18. Dey D, Wong ND, Tamarappoo B, Nakazato R, Gransar H, Cheng VY, Ramesh A, Kakadiaris I, Germano G, Slomka PJ, Berman DS (2010) Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and Metabolic Syndrome. Atherosclerosis 209(1):136–141

    Article  PubMed  CAS  Google Scholar 

  19. Alter P, Schaefer JR, Herzum M, Moosdorf R, Maisch B (2003) Early occurrence of septic pericarditis after Nissen fundoplication. Am J Med 115(6):507–508

    Article  PubMed  Google Scholar 

  20. Maisch B, Seferovic PM, Ristic AD, Erbel R, Rienmuller R, Adler Y, Tomkowski WZ, Thiene G, Yacoub MH (2004) Guidelines on the diagnosis and management of pericardial diseases executive summary; The Task force on the diagnosis and management of pericardial diseases of the European society of cardiology. Eur Heart J 25(7):587–610

    Article  PubMed  Google Scholar 

  21. Maisch B, Ristic AD, Seferovic PM, Tsang TSM (2011) Interventional pericardiology, 1st edn. Springer, Berlin

  22. Miller CA, Schmitt M (2011) Epicardial lipomatous hypertrophy mimicking pericardial effusion: characterization with cardiovascular magnetic resonance. Circ Cardiovasc Imaging 4(1):77–78

    Article  PubMed  Google Scholar 

  23. Maisch B (1994) Pericardial diseases, with a focus on etiology, pathogenesis, pathophysiology, new diagnostic imaging methods, and treatment. Curr Opin Cardiol 9(3):379–388

    Article  PubMed  CAS  Google Scholar 

  24. Maisch B, Ristic AD, Seferovic PM, Spodick DH (2000) Intrapericardial treatment of autoreactive myocarditis with triamcinolon. Successful administration in patients with minimal pericardial effusion. Herz 25(8):781–786

    Article  PubMed  CAS  Google Scholar 

  25. Ong P, Athansiadis A, Hill S, Kispert EM, Borgulya G, Klingel K, Kandolf R, Sechtem U, Mahrholdt H (2011) Usefulness of pericardial effusion as new diagnostic criterion for noninvasive detection of myocarditis. Am J Cardiol 108(3):445–452

    Article  PubMed  Google Scholar 

  26. Maisch B, Karatolios K, Pankuweit S (2006) Recurrent autoreactive pericardial effusion. Impact of an aetiological classification of pericarditis. Dtsch Med Wochenschr 131(39):2143–2146

    Article  PubMed  CAS  Google Scholar 

  27. Spodick DH (2003) Acute cardiac tamponade. N Engl J Med 349(7):684–690

    Article  PubMed  Google Scholar 

  28. Spodick DH (1995) Clarifying characteristics of pericardial tamponade. Chest 107(4):1184

    Article  PubMed  CAS  Google Scholar 

  29. Swami A, Spodick DH (2003) Pulsus paradoxus in cardiac tamponade: a pathophysiologic continuum. Clin Cardiol 26(5):215–217

    Article  PubMed  Google Scholar 

  30. Maksimovic R, Seferovic PM, Ristic AD, Vujisic-Tesic B, Simeunovic DS, Radovanovic G, Matucci-Cerinic M, Maisch B (2006) Cardiac imaging in rheumatic diseases. Rheumatology (Oxford) 45(Suppl 4):iv26–iv31

    Google Scholar 

  31. Tscholakoff D, Sechtem U, de Geer G, Schmidt H, Higgins CB (1987) Evaluation of pleural and pericardial effusions by magnetic resonance imaging. Eur J Radiol 7(3):169–174

    PubMed  CAS  Google Scholar 

  32. Maksimovic R, Dill T, Seferovic PM, Ristic AD, Alter P, Simeunovic DS, Markovic Z, Bachmann GF, Maisch B (2006) Magnetic resonance imaging in pericardial diseases. Indications and diagnostic value. Herz 31(7):708–714

    Article  PubMed  Google Scholar 

  33. Rienmuller R, Groll R, Lipton MJ (2004) CT and MR imaging of pericardial disease. Radiol Clin North Am 42(3):587–601, vi

    Google Scholar 

  34. Sievers B, Brandts B, Moon JC, Pennell DJ, Trappe HJ (2003) Cardiovascular magnetic resonance of imminent cardiac tamponade due to postpericardiotomy syndrome. Int J Cardiol 91(2–3):241–244

    Article  PubMed  Google Scholar 

  35. Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Hetts SW, Higgins CB (2003) CT and MR imaging of pericardial disease. Radiographics 23:S167–S180

    Google Scholar 

  36. Boddy KN, Sleeper MM, Sammarco CD, Weisse C, Ghods S, Litt HI (2011) Cardiac magnetic resonance in the differentiation of neoplastic and nonneoplastic pericardial effusion. J Vet Intern Med 25(5):1003–1009

    Article  PubMed  CAS  Google Scholar 

  37. Schumann C, Kunze M, Kochs M, Hombach V, Rasche V (2007) Pericardial synovial sarcoma mimicking pericarditis in findings of cardiac magnetic resonance imaging. Int J Cardiol 118(3):e83–e84

    Article  PubMed  CAS  Google Scholar 

  38. Hoffmann U, Globits S, Schima W, Loewe C, Puig S, Oberhuber G, Frank H (2003) Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol 92(7):890–895

    Article  PubMed  Google Scholar 

  39. Myers RB, Spodick DH (1999) Constrictive pericarditis: clinical and pathophysiologic characteristics. Am Heart J 138(2 Pt 1):219–232

    Article  PubMed  CAS  Google Scholar 

  40. Byrne JG, Karavas AN, Colson YL, Bueno R, Richards WG, Sugarbaker DJ, Goldhaber SZ (2002) Cardiac decortication (epicardiectomy) for occult constrictive cardiac physiology after left extrapleural pneumonectomy. Chest 122(6):2256–2259

    Article  PubMed  Google Scholar 

  41. Almeida AR, Lopes LR, Cotrim C, Miranda R, Stuart B, Vinhas H, Carrageta M, Pereira H (2011) Effusive-constrictive pericarditis: the role of noninvasive imaging. Rev Port Cardiol 30(4):433–443

    PubMed  Google Scholar 

  42. Khera G, Chowdhury V, Singh S, Dixit R (2005) Magnetic resonance imaging of effusive constrictive pericarditis. Indian Heart J 57(6):780–782

    PubMed  Google Scholar 

  43. Santarone M, Corrado G, Belloni G (2000) Effusive-constrictive pericarditis. Heart 83(5):556

    Article  PubMed  CAS  Google Scholar 

  44. Manhas AH, Martin RT, Reul GJ, Stainback RF (2008) Heart failure due to a post-traumatic calcified pericardial hematoma. Tex Heart Inst J 35(3):345–348

    PubMed  Google Scholar 

  45. Young PM, Glockner JF, Williamson EE, Morris MF, Araoz PA, Julsrud PR, Schaff HV, Edwards WD, Oh JK, Breen JF (2011) MR imaging findings in 76 consecutive surgically proven cases of pericardial disease with CT and pathologic correlation. Int J Cardiovasc Imaging. doi:10.1007/s10554-011-9916-0

  46. Amal L, Nawal D, Abdellah Z, Anis S, Fouad AW, Abdellatif B, Wajih M, Youssef E, Omar T, Rachida A, Loubna B, Laila H, Rhizlane C, Latifa O, Mohamed C (2011) Use of magnetic resonance imaging in assessment of constrictive pericarditis: a Moroccan center experience. Int Arch Med 4(1):36

    Article  Google Scholar 

  47. Lonborg J, Mathur M, Grieve SM, Bhindi R, Ward M, Lowe H, McCrohon J, Figtree GA (2010) Constrictive pericarditis diagnosed by cardiac magnetic resonance. J Am Coll Cardiol 56(20):e39

    Article  PubMed  Google Scholar 

  48. Yared K, Baggish AL, Picard MH, Hoffmann U, Hung J (2010) Multimodality imaging of pericardial diseases. JACC Cardiovasc Imaging 3(6):650–660

    Article  PubMed  Google Scholar 

  49. Ariyarajah V, Jassal DS, Kirkpatrick I, Kwong RY (2009) The utility of cardiovascular magnetic resonance in constrictive pericardial disease. Cardiol Rev 17(2):77–82

    Article  PubMed  Google Scholar 

  50. Rajiah P, Kanne JP (2010) Computed tomography of the pericardium and pericardial disease. J Cardiovasc Comput Tomogr 4(1):3–18

    Article  PubMed  Google Scholar 

  51. Dato I, Coluzzi G, Al Mohanni G, Della BR, Piro M, Natale L, Luciani N, Biasucci LM, Crea F (2008) A young man with intractable ascites and effort dyspnoea without echocardiographic signs of pericardial thickening: the importance of clinical investigation, CT scan and MRI in the diagnosis of constrictive pericarditis. Int J Cardiol 128(2):e79–e81

    Article  PubMed  Google Scholar 

  52. Reinmuller R, Gurgan M, Erdmann E, Kemkes BM, Kreutzer E, Weinhold C (1993) CT and MR evaluation of pericardial constriction: a new diagnostic and therapeutic concept. J Thorac Imaging 8(2):108–121

    Article  PubMed  CAS  Google Scholar 

  53. Sechtem U, Tscholakoff D, Higgins CB (1986) MRI of the normal pericardium. AJR Am J Roentgenol 147(2):239–244

    Article  PubMed  CAS  Google Scholar 

  54. Zurick AO, Bolen MA, Kwon DH, Tan CD, Popovic ZB, Rajeswaran J, Rodriguez ER, Flamm SD, Klein AL (2011) Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy a case series with histopathological correlation. JACC Cardiovasc Imaging 4(11):1180–1191

    Article  PubMed  Google Scholar 

  55. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985

    Article  PubMed  Google Scholar 

  56. Schalla S, Bekkers SC, Dennert R, van Suylen RJ, Waltenberger J, Leiner T, Wildberger J, Crijns HJ, Heymans S (2010) Replacement and reactive myocardial fibrosis in idiopathic dilated cardiomyopathy: comparison of magnetic resonance imaging with right ventricular biopsy. Eur J Heart Fail 12(3):227–231

    Article  PubMed  Google Scholar 

  57. Unverferth DV, Baker PB, Swift SE, Chaffee R, Fetters JK, Uretsky BF, Thompson ME, Leier CV (1986) Extent of myocardial fibrosis and cellular hypertrophy in dilated cardiomyopathy. Am J Cardiol 57(10):816–820

    Article  PubMed  CAS  Google Scholar 

  58. Alter P, Rupp H (2011) Late gadolinium enhancement and higher risk of arrhythmias: fibrosis or increased ventricular wall stress? J Am Coll Cardiol 58(11):1194–1195

    Article  PubMed  Google Scholar 

  59. Alter P, Rupp H (2011) Myocardial fibrosis in left ventricular non-compaction: is late gadolinium enhancement indeed indicative of fibrosis? Eur J Heart Fail 13(5):577–578

    Article  PubMed  Google Scholar 

  60. Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52(19):1574–1580

    Article  PubMed  Google Scholar 

  61. Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM, Taylor AJ (2011) Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. J Am Coll Cardiol 57(7):821–828

    Article  PubMed  Google Scholar 

  62. Feng D, Glockner J, Kim K, Martinez M, Syed IS, Araoz P, Breen J, Espinosa RE, Sundt T, Schaff HV, Oh JK (2011) Cardiac magnetic resonance imaging pericardial late gadolinium enhancement and elevated inflammatory markers can predict the reversibility of constrictive pericarditis after antiinflammatory medical therapy: a pilot study. Circulation 124(17):1830–1837

    Article  PubMed  CAS  Google Scholar 

  63. Cameron J, Oesterle SN, Baldwin JC, Hancock EW (1987) The etiologic spectrum of constrictive pericarditis. Am Heart J 113(2 Pt 1):354–360

    Article  PubMed  CAS  Google Scholar 

  64. Chinnaiyan KM, Leff CB, Marsalese DL (2004) Constrictive pericarditis versus restrictive cardiomyopathy: challenges in diagnosis and management. Cardiol Rev 12(6):314–320

    Article  PubMed  Google Scholar 

  65. Fowler SJ, Narula J, Gurudevan SV (2006) Review of noninvasive imaging for hypertrophic cardiac syndromes and restrictive physiology. Heart Fail Clin 2(2):215–230

    Article  PubMed  Google Scholar 

  66. Celletti F, Fattori R, Napoli G, Leone O, Rocchi G, Reggiani LB, Gavelli G (1999) Assessment of restrictive cardiomyopathy of amyloid or idiopathic etiology by magnetic resonance imaging. Am J Cardiol 83(5):798–801, A10

    Google Scholar 

  67. Cantor WJ, Butany J, Iwanochko M, Liu P (1998) Restrictive cardiomyopathy secondary to Fabry’s disease. Circulation 98(14):1457–1459

    Article  PubMed  CAS  Google Scholar 

  68. Chang SA, Kim HK, Park EA, Kim YJ, Sohn DW (2009) Images in cardiovascular medicine. Loeffler endocarditis mimicking apical hypertrophic cardiomyopathy. Circulation 120(1):82–85

    Article  PubMed  Google Scholar 

  69. Schreiber K, Zuern CS, Gawaz M (2007) Loeffler endocarditis: findings on magnetic resonance imaging. Heart 93(3):354

    Article  PubMed  CAS  Google Scholar 

  70. Alter P, Maisch B (2006) Endomyocardial fibrosis in Churg-Strauss syndrome assessed by cardiac magnetic resonance imaging. Int J Cardiol 108(1):112–113

    Article  PubMed  Google Scholar 

  71. Alter P, Rominger MB, Kajdan U, Kail S, Moll R, Klose KJ, Maisch B (2006) Pericardial effusion and non-constrictive diastolic dysfunction in acromegaly. Eur J Radiol Extra 58:81–84

    Article  Google Scholar 

  72. Cheng H, Zhao S, Jiang S, Lu M, Yan C, Ling J, Zhang Y, Liu Q, Ma N, Yin G, Jerecic R, He Z (2011) The relative atrial volume ratio and late gadolinium enhancement provide additive information to differentiate constrictive pericarditis from restrictive cardiomyopathy. J Cardiovasc Magn Reson 13:15

    Article  PubMed  Google Scholar 

  73. Kono AK, Yamada N, Higashi M, Kanzaki S, Hashimura H, Morita Y, Sakuma T, Noguchi T, Naito H, Sugimura K (2011) Dynamic late gadolinium enhancement simply quantified using myocardium to lumen signal ratio: normal range of ratio and diffuse abnormal enhancement of cardiac amyloidosis. J Magn Reson Imaging 34(1):50–55

    Article  PubMed  Google Scholar 

  74. Sparrow P, Amirabadi A, Sussman MS, Paul N, Merchant N (2009) Quantitative assessment of myocardial T2 relaxation times in cardiac amyloidosis. J Magn Reson Imaging 30(5):942–946

    Article  PubMed  Google Scholar 

  75. Ordovas KG, Higgins CB (2011) Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology 261(2):358–374

    Article  PubMed  Google Scholar 

  76. Karamitsos TD, Neubauer S (2011) The interplay between cardiac strain and fibrosis in non-ischaemic cardiomyopathies: insights from cardiovascular magnetic resonance. Eur J Heart Fail 13(9):927–928

    Article  PubMed  Google Scholar 

  77. Francone M, Dymarkowski S, Kalantzi M, Rademakers FE, Bogaert J (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 16(4):944–951

    Article  PubMed  Google Scholar 

  78. Hancock EW (2001) Differential diagnosis of restrictive cardiomyopathy and constrictive pericarditis. Heart 86(3):343–349

    PubMed  CAS  Google Scholar 

  79. Alter P, Rupp H, Maisch B (2008) Assessment and relevance of ventricular wall stress in heart failure. Eur Heart J 29(18):2316

    Article  PubMed  Google Scholar 

  80. Alter P, Rupp H, Rominger MB, Czerny F, Vollrath A, Klose KJ, Maisch B (2010) A new method to assess ventricular wall stress in patients with heart failure and its relation to heart rate variability. Int J Cardiol 139(3):301–303

    Article  PubMed  CAS  Google Scholar 

  81. Alter P, Rupp H, Rominger MB, Vollrath A, Czerny F, Figiel JH, Adams P, Stoll F, Klose KJ, Maisch B (2008) B-type natriuretic peptide and wall stress in dilated human heart. Mol Cell Biochem 314(1–2):179–191

    Article  PubMed  CAS  Google Scholar 

  82. Alter P, Rupp H, Stoll F, Adams P, Figiel JH, Klose KJ, Rominger MB, Maisch B (2011) Increased enddiastolic wall stress precedes left ventricular hypertrophy in dilative heart failure-Use of the volume-based wall stress index. Int J Cardiol. doi:10.1016/j.ijcard.2011.07.092

  83. deVries G, Hamilton DR, Ter Keurs HE, Beyar R, Tyberg JV (2001) A novel technique for measurement of pericardial pressure. Am J Physiol Heart Circ Physiol 280(6):H2815–H2822

    PubMed  CAS  Google Scholar 

  84. Rupp H, Rupp TP, Alter P, Jung N, Pankuweit S, Maisch B (2010) Intrapericardial procedures for cardiac regeneration by stem cells: need for minimal invasive access (AttachLifter) to the normal pericardial cavity. Herz 35(7):458–465

    Article  PubMed  CAS  Google Scholar 

  85. Lee MC, Fung YC, Shabetai R, LeWinter MM (1987) Biaxial mechanical properties of human pericardium and canine comparisons. Am J Physiol 253(1 Pt 2):H75–H82

    PubMed  CAS  Google Scholar 

  86. Freeman GL, Little WC (1986) Comparison of in situ and in vitro studies of pericardial pressure-volume relation in dogs. Am J Physiol 251(2 Pt 2):H421–H427

    PubMed  CAS  Google Scholar 

  87. Freeman GL, LeWinter MM (1984) Pericardial adaptations during chronic cardiac dilation in dogs. Circ Res 54(3):294–300

    Article  PubMed  CAS  Google Scholar 

  88. Freeman GL (1990) The effects of the pericardium on function of normal and enlarged hearts. Cardiol Clin 8(4):579–586

    PubMed  CAS  Google Scholar 

  89. Lee MC, LeWinter MM, Freeman G, Shabetai R, Fung YC (1985) Biaxial mechanical properties of the pericardium in normal and volume overload dogs. Am J Physiol 249(2 Pt 2):H222–H230

    PubMed  CAS  Google Scholar 

  90. Tischler MD, Rowan M, LeWinter MM (1993) Increased left ventricular mass after thoracotomy and pericardiotomy. A role for relief of pericardial constraint? Circulation 87(6):1921–1927

    Article  PubMed  CAS  Google Scholar 

  91. Honnemann J, Figiel JH, Rominger M (2009) Heart dislocation-a rare life-threatening complication after pneumonectomy. Rofo 181(3):264–265

    Article  PubMed  CAS  Google Scholar 

  92. Leibecke T, Stoeckelhuber BM, Gellissen J, Bartels C, Meier T, Eberhardt F, Helmberger T, Rademaker J (2008) Posttraumatic and postoperative cardiac luxation: computed tomography findings in nine patients. J Trauma 64(3):721–726

    Article  PubMed  Google Scholar 

  93. Bogaert J, Francone M (2009) Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 11:14

    Article  PubMed  Google Scholar 

  94. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, Gertz MA, Dispenzieri A, Oh JK, Bellavia D, Tajik AJ, Grogan M (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 3(2):155–164

    Article  PubMed  Google Scholar 

  95. Gomes AS, Lois JF, Child JS, Brown K, Batra P (1987) Cardiac tumors and thrombus: evaluation with MR imaging. AJR Am J Roentgenol 149(5):895–899

    Article  PubMed  CAS  Google Scholar 

  96. Lund JT, Ehman RL, Julsrud PR, Sinak LJ, Tajik AJ (1989) Cardiac masses: assessment by MR imaging. AJR Am J Roentgenol 152(3):469–473

    Article  PubMed  CAS  Google Scholar 

  97. Oyama N, Oyama N, Komuro K, Nambu T, Manning WJ, Miyasaka K (2004) Computed tomography and magnetic resonance imaging of the pericardium: anatomy and pathology. Magn Reson Med Sci 3(3):145–152

    Article  PubMed  Google Scholar 

  98. Smith WH, Beacock DJ, Goddard AJ, Bloomer TN, Ridgway JP, Sivananthan UM (2001) Magnetic resonance evaluation of the pericardium. Br J Radiol 74(880):384–392

    PubMed  CAS  Google Scholar 

  99. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, O’Donnell CJ, Fox CS, Hoffmann U (2009) Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J 30(7):850–856

    Article  PubMed  Google Scholar 

  100. Maisch B, Ristic AD, Rupp H, Spodick DH (2001) Pericardial access using the PerDUCER and flexible percutaneous pericardioscopy. Am J Cardiol 88(11):1323–1326

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Alter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alter, P., Figiel, J.H., Rupp, T.P. et al. MR, CT, and PET imaging in pericardial disease. Heart Fail Rev 18, 289–306 (2013). https://doi.org/10.1007/s10741-012-9309-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-012-9309-z

Keywords

Navigation