Skip to main content

Advertisement

Log in

Modulation of β-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Despite remarkable advances in therapy, heart failure remains a leading cause of morbidity and mortality. Although enhanced β-adrenergic receptor stimulation is part of normal physiologic adaptation to either the increase in physiologic demand or decrease in cardiac function, chronic β-adrenergic stimulation has been associated with increased mortality and morbidity in both animal models and humans. For example, overexpression of cardiac Gsα or β-adrenergic receptors in transgenic mice results in enhanced cardiac function in young animals, but with prolonged overstimulation of this pathway, cardiomyopathy develops in these mice as they age. Similarly, chronic sympathomimetic amine therapy increases morbidity and mortality in patients with heart failure. Conversely, the use of β-blockade has proven to be of benefit and is currently part of the standard of care for heart failure. It is conceivable that interrupting distal mechanisms in the β-adrenergic receptor-G protein-adenylyl cyclase pathway may also provide targets for future therapeutic modalities for heart failure. Interestingly, there are two major isoforms of adenylyl cyclase (AC) in the heart (type 5 and type 6), which may exert opposite effects on the heart, i.e., cardiac overexpression of AC6 appears to be protective, whereas disruption of type 5 AC prolongs longevity and protects against cardiac stress. The goal of this review is to summarize the paradigm shift in the treatment of heart failure over the past 50 years from administering sympathomimetic amine agonists to administering β-adrenergic receptor antagonists, and to explore the basis for a novel therapy of inhibiting type 5 AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldberg LI, Bloodwell RD, Braunwald E, Morrow AG (1960) The direct effects of norepinephrine, epinephrine, and methoxamine on myocardial contractile force in man. Circulation 22:1125–1132

    CAS  PubMed  Google Scholar 

  2. Gazes PC, Goldberg LI, Darby TD (1953) Heart force effects of sympathomimetic amines as a basis for their use in shock accompanying myocardial infarction. Circulation 8:883–892

    CAS  PubMed  Google Scholar 

  3. Cotten MD, Pincus S (1955) Comparative effects of a wide range of doses of L-epinephrine and of L-norepinephrine on the contractile force of the heart in situ. J Pharmacol Exp Ther 114:110–118

    CAS  PubMed  Google Scholar 

  4. Chidsey CA, Braunwald E, Morrow AG, Mason DT (1963) Myocardial norepinephrine concentration in man. Effects of reserpine and of congestive heart failure. N Engl J Med 269:653–658

    Article  CAS  PubMed  Google Scholar 

  5. Chidsey CA, Kaiser GA, Sonnenblick EH, Spann JF, Braunwald E (1964) Cardiac norephinephrine stores in experimental heart failure in the dog. J Clin Invest 43:2386–2393

    Article  CAS  PubMed  Google Scholar 

  6. Bristow MR, Ginsburg R, Umans V et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309

    CAS  PubMed  Google Scholar 

  7. Bristow MR, Minobe WA, Raynolds MV et al (1993) Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 92:2737–2745

    Article  CAS  PubMed  Google Scholar 

  8. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  9. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  CAS  PubMed  Google Scholar 

  10. Rapundalo ST (1998) Cardiac protein phosphorylation: functional and pathophysiological correlates. Cardiovasc Res 38:559–588

    Article  CAS  PubMed  Google Scholar 

  11. Cohen PT (2002) Protein phosphatase 1-targeted in many directions. J Cell Sci 115:241–256

    CAS  PubMed  Google Scholar 

  12. Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    Article  CAS  PubMed  Google Scholar 

  13. Herzig S, Neumann J (2000) Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 80:173–210

    CAS  PubMed  Google Scholar 

  14. Marks AR, Marx SO, Reiken S (2002) Regulation of ryanodine receptors via macromolecular complexes: a novel role for leucine/isoleucine zippers. Trends Cardiovasc Med 12:166–170

    Article  CAS  PubMed  Google Scholar 

  15. Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906

    Article  CAS  PubMed  Google Scholar 

  16. Movsesian MA, Bristow MR (2005) Alterations in cAMP-mediated signaling and their role in the pathophysiology of dilated cardiomyopathy. Curr Top Dev Biol 68:25–48

    Article  CAS  PubMed  Google Scholar 

  17. El-Armouche A, Zolk O, Rau T, Eschenhagen T (2003) Inhibitory G-proteins and their role in desensitization of the adenylyl cyclase pathway in heart failure. Cardiovasc Res 60:478–487

    Article  CAS  PubMed  Google Scholar 

  18. Vatner SF, Vatner DE, Homcy CJ (2000) Beta-adrenergic receptor signaling: an acute compensatory adjustment-inappropriate for the chronic stress of heart failure? Insights from Gsalpha overexpression and other genetically engineered animal models. Circ Res 86:502–506

    CAS  PubMed  Google Scholar 

  19. Bristow MR, Ginsburg R, Minobe W et al (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    Article  CAS  PubMed  Google Scholar 

  20. Engelhardt S, Bohm M, Erdmann E, Lohse MJ (1996) Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J Am Coll Cardiol 27:146–154

    Article  CAS  PubMed  Google Scholar 

  21. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463

    CAS  PubMed  Google Scholar 

  22. Diviani D (2008) Modulation of cardiac function by A-kinase anchoring proteins. Curr Opin Pharmacol 8:166–173

    Article  CAS  PubMed  Google Scholar 

  23. Zakhary DR, Moravec CS, Bond M (2000) Regulation of PKA binding to AKAPs in the heart: alterations in human heart failure. Circulation 101:1459–1464

    CAS  PubMed  Google Scholar 

  24. Dale HH (1906) On some physiological actions of ergot. J Physiol 34:163–206

    PubMed  Google Scholar 

  25. Cannon W, Rosenbueth A (1933) Studies on the conditions of activity in endocrine organs: XXIX. Sympathin E and sympathin I. Am J Physiol 104:557–574

    CAS  Google Scholar 

  26. Bylund DB (2007) Alpha- and beta-adrenergic receptors: Ahlquist’s landmark hypothesis of a single mediator with two receptors. Am J Physiol Endocrinol Metab 293:E1479–E1481

    Article  CAS  PubMed  Google Scholar 

  27. Ahlquist RP (1967) Development of the concept of alpha and beta adrenotropic receptors. Ann N Y Acad Sci 139:549–552

    Article  CAS  PubMed  Google Scholar 

  28. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    CAS  PubMed  Google Scholar 

  29. Bylund DB (1992) Subtypes of alpha 1- and alpha 2-adrenergic receptors. FASEB J 6:832–839

    CAS  PubMed  Google Scholar 

  30. Graham RM, Perez DM, Hwa J, Piascik MT (1996) Alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 78:737–749

    CAS  PubMed  Google Scholar 

  31. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762

    Article  CAS  PubMed  Google Scholar 

  32. Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402:181–184

    Article  CAS  PubMed  Google Scholar 

  33. Wolff DW, Dang HK, Liu MF, Jeffries WB, Scofield MA (1998) Distribution of alpha1-adrenergic receptor mRNA species in rat heart. J Cardiovasc Pharmacol 32:117–122

    Article  CAS  PubMed  Google Scholar 

  34. Lin F, Owens WA, Chen S et al (2001) Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89:343–350

    Article  CAS  PubMed  Google Scholar 

  35. Rorabaugh BR, Ross SA, Gaivin RJ et al (2005) Alpha1a- but not alpha1B-adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovasc Res 65:436–445

    Article  CAS  PubMed  Google Scholar 

  36. Woodcock EA (2007) Roles of alpha1A- and alpha1B-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 34:884–888

    Article  CAS  PubMed  Google Scholar 

  37. Lemire I, Allen BG, Rindt H, Hebert TE (1998) Cardiac-specific overexpression of alpha1BAR regulates betaAR activity via molecular crosstalk. J Mol Cell Cardiol 30:1827–1839

    Article  CAS  PubMed  Google Scholar 

  38. Jensen BC, Swigart PM, Laden ME, DeMarco T, Hoopes C, Simpson PC (2009) The alpha-1D Is the predominant alpha-1-adrenergic receptor subtype in human epicardial coronary arteries. J Am Coll Cardiol 54:1137–1145

    Article  CAS  PubMed  Google Scholar 

  39. Smith HJ, Oriol A, Morch J, McGregor M (1967) Hemodynamic studies in cardiogenic shock. Treatment with isoproterenol and metaraminol. Circulation 35:1084–1091

    CAS  PubMed  Google Scholar 

  40. Maroko PR, Kjekshus JK, Sobel BE et al (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82

    CAS  PubMed  Google Scholar 

  41. Goldberg LI (1972) Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev 24:1–29

    CAS  PubMed  Google Scholar 

  42. Vatner SF, Millard RW, Higgins CB (1973) Coronary and myocardial effects of dopamine in the conscious dog: parasympatholytic augmentation of pressor and inotropic actions. J Pharmacol Exp Ther 187:280–295

    CAS  PubMed  Google Scholar 

  43. Stoner JD 3rd, Bolen JL, Harrison DC (1977) Comparison of dobutamine and dopamine in treatment of severe heart failure. Br Heart J 39:536–539

    Article  PubMed  Google Scholar 

  44. van de Borne P, Oren R, Somers VK (1998) Dopamine depresses minute ventilation in patients with heart failure. Circulation 98:126–131

    PubMed  Google Scholar 

  45. Felker GM, Benza RL, Chandler AB et al (2003) Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol 41:997–1003

    Article  CAS  PubMed  Google Scholar 

  46. Vatner SF, Franklin D, Van Citters RL, Braunwald E (1970) Effects of carotid sinus nerve stimulation on the coronary circulation of the conscious dog. Circ Res 27:11–21

    CAS  PubMed  Google Scholar 

  47. Vatner SF, Higgins CB, Franklin D, Braunwald E (1972) Extent of carotid sinus regulation of the myocardial contractile state in conscious dogs. J Clin Invest 51:995–1008

    Article  CAS  PubMed  Google Scholar 

  48. Vatner SF, Rutherford JD, Ochs HR (1979) Baroreflex and vagal mechanisms modulating left ventricular contractile responses to sympathomimetic amines in conscious dogs. Circ Res 44:195–207

    CAS  PubMed  Google Scholar 

  49. Bayram M, De Luca L, Massie MB, Gheorghiade M (2005) Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol 96:47G–58G

    Article  CAS  PubMed  Google Scholar 

  50. Miller AJ (1977) Dopamine in the treatment of heart failure. Proc R Soc Med 70(Suppl 2):16–24

    PubMed  Google Scholar 

  51. Tuttle RR, Mills J (1975) Dobutamine: development of a new catecholamine to selectively increase cardiac contractility. Circ Res 36:185–196

    CAS  PubMed  Google Scholar 

  52. Fitzpatrick D, Ikram H, Nicholls MG, Espiner EA (1983) Hemodynamic, hormonal and electrolyte responses to prenalterol infusion in heart failure. Circulation 67:613–619

    CAS  PubMed  Google Scholar 

  53. Petch MC, Wisbey C, Ormerod O, Scott C, Goodfellow RM (1984) Acute haemodynamic effects of oral prenalterol in severe heart failure. Br Heart J 52:49–52

    Article  CAS  PubMed  Google Scholar 

  54. Lambertz H, Meyer J, Erbel R (1984) Long-term hemodynamic effects of prenalterol in patients with severe congestive heart failure. Circulation 69:298–305

    CAS  PubMed  Google Scholar 

  55. Glover DR, Wathen CG, Murray RG, Petch MC, Muir AL, Littler WA (1985) Are the clinical benefits of oral prenalterol in ischaemic heart failure due to beta blockade? A six month randomised double blind comparison with placebo. Br Heart J 53:208–215

    Article  CAS  PubMed  Google Scholar 

  56. The Xamoterol in Severe Heart Failure Study Group (1990) Xamoterol in severe heart failure. Lancet 336:1–6

    Google Scholar 

  57. O’Connor CM, Gattis WA, Uretsky BF et al (1999) Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J 138:78–86

    Article  PubMed  Google Scholar 

  58. Coletta AP, Cleland JG, Freemantle N, Clark AL (2004) Clinical trials update from the European Society of Cardiology Heart Failure meeting: SHAPE, BRING-UP 2 VAS, COLA II, FOSIDIAL, BETACAR, CASINO and meta-analysis of cardiac resynchronisation therapy. Eur J Heart Fail 6:673–676

    Article  PubMed  Google Scholar 

  59. Abraham WT, Adams KF, Fonarow GC et al (2005) In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the acute decompensated heart failure national registry (ADHERE). J Am Coll Cardiol 46:57–64

    Article  PubMed  Google Scholar 

  60. Gollub SB, Elkayam U, Young JB, Miller LW, Haffey KA (1991) Efficacy and safety of a short-term (6-h) intravenous infusion of dopexamine in patients with severe congestive heart failure: a randomized, double-blind, parallel, placebo-controlled multicenter study. J Am Coll Cardiol 18:383–390

    Article  CAS  PubMed  Google Scholar 

  61. Asanoi H, Sasayama S, Sakurai T et al (1995) Intravenous dopexamine in the treatment of acute congestive heart failure: results of a multicenter, double-blind, placebo-controlled withdrawal study. Cardiovasc Drugs Ther 9:791–797

    Article  CAS  PubMed  Google Scholar 

  62. Franciosa JA, Limas CJ, Guiha NH, Rodriguera E, Cohn JN (1972) Improved left ventricular function during nitroprusside infusion in acute myocardial infarction. Lancet 1:650–654

    Article  CAS  PubMed  Google Scholar 

  63. Guiha NH, Cohn JN, Mikulic E, Franciosa JA, Limas CJ (1974) Treatment of refractory heart failure with infusion of nitroprusside. N Engl J Med 291:587–592

    Article  CAS  PubMed  Google Scholar 

  64. Miller RR, Vismara LA, Zelis R, Amsterdam EA, Mason DT (1975) Clinical use of sodium nitroprusside in chronic ischemic heart disease. Effects on peripheral vascular resistance and venous tone and on ventricular volume, pump and mechanical performance. Circulation 51:328–336

    CAS  PubMed  Google Scholar 

  65. Elkayam U, Tasissa G, Binanay C et al (2007) Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am Heart J 153:98–104

    Article  PubMed  Google Scholar 

  66. Weber KT, Janicki JS, Jain MC (1986) Enoximone (MDL 17, 043) for stable, chronic heart failure secondary to ischemic or idiopathic cardiomyopathy. Am J Cardiol 58:589–595

    Article  CAS  PubMed  Google Scholar 

  67. Likoff MJ, Ulrich S, Hakki A, Iskandrian AS (1986) Comparison of acute hemodynamic response to dobutamine and intravenous MDL 17, 043 (enoximone) in severe congestive heart failure secondary to ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 57:1328–1334

    Article  CAS  PubMed  Google Scholar 

  68. Gilbert EM, Bristow MR, Mason JW (1987) Acute hemodynamic response to low dose enoximone (MDL 17, 043): an oral dose-range study. Am J Cardiol 60:57C–62C

    Article  CAS  PubMed  Google Scholar 

  69. Installe E, Gonzalez M, Jacquemart JL et al (1987) Comparative effects on hemodynamics of enoximone (MDL 17, 043), dobutamine and nitroprusside in severe congestive heart failure. Am J Cardiol 60:46C–52C

    Article  CAS  PubMed  Google Scholar 

  70. Choraria SK, Taylor D, Pilcher J (1987) Double-blind crossover comparison of enoximone and placebo in patients with congestive heart failure. Circulation 76:1307–1311

    CAS  PubMed  Google Scholar 

  71. Treese N, Erbel R, Pilcher J et al (1987) Long-term treatment with oral enoximone for chronic congestive heart failure: the European experience. Am J Cardiol 60:85C–90C

    Article  CAS  PubMed  Google Scholar 

  72. Zipperle G, Butzer F, Dieterich HA, Heinrich F (1987) A double-blind dose response comparison of oral enoximone and placebo for congestive heart failure. Am J Cardiol 60:72C–74C

    Article  CAS  PubMed  Google Scholar 

  73. Narahara KA (1991) Oral enoximone therapy in chronic heart failure: a placebo-controlled randomized trial. The Western Enoximone Study Group. Am Heart J 121:1471–1479

    Article  CAS  PubMed  Google Scholar 

  74. Itoh H, Taniguchi K, Doi M, Koike A, Sakuma A (1991) Effects of enoximone on exercise tolerance in patients with mild to moderate heart failure. Am J Cardiol 68:360–364

    Article  CAS  PubMed  Google Scholar 

  75. Dec GW, Fifer MA, Herrmann HC, Cocca-Spofford D, Semigran MJ (1993) Long-term outcome of enoximone therapy in patients with refractory heart failure. Am Heart J 125:423–429

    Article  CAS  PubMed  Google Scholar 

  76. Galie N, Branzi A, Magnani G et al (1993) Effect of enoximone alone and in combination with metoprolol on myocardial function and energetics in severe congestive heart failure: improvement in hemodynamic and metabolic profile. Cardiovasc Drugs Ther 7:337–347

    Article  CAS  PubMed  Google Scholar 

  77. Shakar SF, Abraham WT, Gilbert EM et al (1998) Combined oral positive inotropic and beta-blocker therapy for treatment of refractory class IV heart failure. J Am Coll Cardiol 31:1336–1340

    Article  CAS  PubMed  Google Scholar 

  78. Cowley AJ, Skene AM (1994) Treatment of severe heart failure: quantity or quality of life? A trial of enoximone. Enoximone investigators. Br Heart J 72:226–230

    Article  CAS  PubMed  Google Scholar 

  79. Metra M, Eichhorn E, Abraham WT et al (2009) Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J 30:3015–3026

    Article  CAS  PubMed  Google Scholar 

  80. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    Article  CAS  PubMed  Google Scholar 

  81. Alexander RW, Williams LT, Lefkowitz RJ (1975) Identification of cardiac beta-adrenergic receptors by (minus) [3H]alprenolol binding. Proc Natl Acad Sci USA 72:1564–1568

    Article  CAS  PubMed  Google Scholar 

  82. Shen YT, Cervoni P, Claus T, Vatner SF (1996) Differences in beta 3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs. J Pharmacol Exp Ther 278:1435–1443

    CAS  PubMed  Google Scholar 

  83. Brodde OE (1991) Pathophysiology of the beta-adrenoceptor system in chronic heart failure: consequences for treatment with agonists, partial agonists or antagonists? Eur Heart J 12(Suppl F):54–62

    PubMed  Google Scholar 

  84. Bristow MR, Hershberger RE, Port JD et al (1990) Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82:I12–I25

    CAS  PubMed  Google Scholar 

  85. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R (1989) Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 35:295–303

    CAS  PubMed  Google Scholar 

  86. Bristow MR, Anderson FL, Port JD et al (1991) Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84:1024–1039

    CAS  PubMed  Google Scholar 

  87. Cross HR, Steenbergen C, Lefkowitz RJ, Koch WJ, Murphy E (1999) Overexpression of the cardiac beta(2)-adrenergic receptor and expression of a beta-adrenergic receptor kinase-1 (betaARK1) inhibitor both increase myocardial contractility but have differential effects on susceptibility to ischemic injury. Circ Res 85:1077–1084

    CAS  PubMed  Google Scholar 

  88. Milano CA, Allen LF, Rockman HA et al (1994) Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 264:582–586

    Article  CAS  PubMed  Google Scholar 

  89. Tevaearai HT, Eckhart AD, Walton GB, Keys JR, Wilson K, Koch WJ (2002) Myocardial gene transfer and overexpression of beta2-adrenergic receptors potentiates the functional recovery of unloaded failing hearts. Circulation 106:124–129

    Article  CAS  PubMed  Google Scholar 

  90. Dorn GW 2nd, Tepe NM, Lorenz JN, Koch WJ, Liggett SB (1999) Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc Natl Acad Sci USA 96:6400–6405

    Article  CAS  PubMed  Google Scholar 

  91. Liggett SB, Tepe NM, Lorenz JN et al (2000) Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101:1707–1714

    CAS  PubMed  Google Scholar 

  92. Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsburg R, Fowler MB (1989) Increased beta-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 79:483–490

    CAS  PubMed  Google Scholar 

  93. Kubo H, Margulies KB, Piacentino V 3rd, Gaughan JP, Houser SR (2001) Patients with end-stage congestive heart failure treated with beta-adrenergic receptor antagonists have improved ventricular myocyte calcium regulatory protein abundance. Circulation 104:1012–1018

    Article  CAS  PubMed  Google Scholar 

  94. Lowes BD, Gilbert EM, Abraham WT et al (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 346:1357–1365

    Article  CAS  PubMed  Google Scholar 

  95. Iwase M, Uechi M, Vatner DE et al (1997) Cardiomyopathy induced by cardiac Gs alpha overexpression. Am J Physiol 272:H585–H589

    CAS  PubMed  Google Scholar 

  96. Lader AS, Xiao YF, Ishikawa Y et al (1998) Cardiac Gsalpha overexpression enhances L-type calcium channels through an adenylyl cyclase independent pathway. Proc Natl Acad Sci USA 95:9669–9674

    Article  CAS  PubMed  Google Scholar 

  97. Iwase M, Bishop SP, Uechi M et al (1996) Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ Res 78:517–524

    CAS  PubMed  Google Scholar 

  98. Asai K, Yang GP, Geng YJ et al (1999) Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. J Clin Invest 104:551–558

    Article  CAS  PubMed  Google Scholar 

  99. Geng YJ, Ishikawa Y, Vatner DE et al (1999) Apoptosis of cardiac myocytes in Gsalpha transgenic mice. Circ Res 84:34–42

    CAS  PubMed  Google Scholar 

  100. Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96:7059–7064

    Article  CAS  PubMed  Google Scholar 

  101. Du XJ, Gao XM, Wang B, Jennings GL, Woodcock EA, Dart AM (2000) Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovasc Res 48:448–454

    Article  CAS  PubMed  Google Scholar 

  102. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    CAS  PubMed  Google Scholar 

  103. Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100:2210–2212

    CAS  PubMed  Google Scholar 

  104. Zaugg M, Xu W, Lucchinetti E, Shafiq SA, Jamali NZ, Siddiqui MA (2000) Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102:344–350

    CAS  PubMed  Google Scholar 

  105. Koch WJ, Inglese J, Stone WC, Lefkowitz RJ (1993) The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem 268:8256–8260

    CAS  PubMed  Google Scholar 

  106. Koch WJ, Hawes BE, Allen LF, Lefkowitz RJ (1994) Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras. Proc Natl Acad Sci USA 91:12706–12710

    Article  CAS  PubMed  Google Scholar 

  107. Xiao RP, Avdonin P, Zhou YY et al (1999) Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 84:43–52

    CAS  PubMed  Google Scholar 

  108. Zou Y, Komuro I, Yamazaki T et al (1999) Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J Biol Chem 274:9760–9770

    Article  CAS  PubMed  Google Scholar 

  109. Burniston JG, Tan LB, Goldspink DF (2005) beta2-Adrenergic receptor stimulation in vivo induces apoptosis in the rat heart and soleus muscle. J Appl Physiol 98:1379–1386

    Article  CAS  PubMed  Google Scholar 

  110. Xiao RP, Hohl C, Altschuld R et al (1994) Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 269:19151–19156

    CAS  PubMed  Google Scholar 

  111. Xiao RP, Lakatta EG (1993) Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73:286–300

    CAS  PubMed  Google Scholar 

  112. Xiang Y, Kobilka B (2003) The PDZ-binding motif of the beta2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proc Natl Acad Sci USA 100:10776–10781

    Article  CAS  PubMed  Google Scholar 

  113. Devic E, Xiang Y, Gould D, Kobilka B (2001) Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 60:577–583

    CAS  PubMed  Google Scholar 

  114. Xiao RP, Ji X, Lakatta EG (1995) Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47:322–329

    CAS  PubMed  Google Scholar 

  115. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98:1607–1612

    Article  CAS  PubMed  Google Scholar 

  116. Chesley A, Lundberg MS, Asai T et al (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3’-kinase. Circ Res 87:1172–1179

    CAS  PubMed  Google Scholar 

  117. Schafer M, Frischkopf K, Taimor G, Piper HM, Schluter KD (2000) Hypertrophic effect of selective beta(1)-adrenoceptor stimulation on ventricular cardiomyocytes from adult rat. Am J Physiol Cell Physiol 279:C495–C503

    CAS  PubMed  Google Scholar 

  118. Morisco C, Zebrowski DC, Vatner DE, Vatner SF, Sadoshima J (2001) Beta-adrenergic cardiac hypertrophy is mediated primarily by the beta(1)-subtype in the rat heart. J Mol Cell Cardiol 33:561–573

    Article  CAS  PubMed  Google Scholar 

  119. Peter PS, Brady JE, Yan L et al (2007) Inhibition of p38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenergic receptor. J Clin Invest 117:1335–1343

    Article  CAS  PubMed  Google Scholar 

  120. Kuschel M, Zhou YY, Cheng H et al (1999) G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. J Biol Chem 274:22048–22052

    Article  CAS  PubMed  Google Scholar 

  121. Chen-Izu Y, Xiao RP, Izu LT et al (2000) G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 79:2547–2556

    Article  CAS  PubMed  Google Scholar 

  122. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  CAS  PubMed  Google Scholar 

  123. Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    Article  CAS  PubMed  Google Scholar 

  124. Nikolaev VO, Moshkov A, Lyon AR et al (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    Article  CAS  PubMed  Google Scholar 

  125. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    Article  CAS  PubMed  Google Scholar 

  126. McKnight GS, Cummings DE, Amieux PS et al (1998) Cyclic AMP, PKA, and the physiological regulation of adiposity. Recent Prog Horm Res 53:139–159 discussion 160–131

    CAS  PubMed  Google Scholar 

  127. Antos CL, Frey N, Marx SO et al (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res 89:997–1004

    Article  CAS  PubMed  Google Scholar 

  128. Yan L, Dillinger J, Williams JG et al (2009) Abstract 5936: Inhibition of Type 5 adenylyl cyclase rescues cardiomyopathy induced by overexpressed beta2-adrenergic receptors in the heart. Circulation S1178

  129. Oliva F, Latini R, Politi A et al (1999) Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. Am Heart J 138:247–253

    Article  CAS  PubMed  Google Scholar 

  130. Packer M, Carver JR, Rodeheffer RJ et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 325:1468–1475

    Article  CAS  PubMed  Google Scholar 

  131. Packer M, Bristow MR, Cohn JN et al (1996) The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. carvedilol heart failure study group. N Engl J Med 334:1349–1355

    Article  CAS  PubMed  Google Scholar 

  132. Lechat P, Packer M, Chalon S, Cucherat M, Arab T, Boissel JP (1998) Clinical effects of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo-controlled, randomized trials. Circulation 98:1184–1191

    CAS  PubMed  Google Scholar 

  133. Waagstein F, Hjalmarson AC, Wasir HS (1974) Apex cardiogram and systolic time intervals in acute myocardial infarction and effects of practolol. Br Heart J 36:1109–1121

    Article  CAS  PubMed  Google Scholar 

  134. Waagstein F, Bristow MR, Swedberg K et al (1993) Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in dilated cardiomyopathy (MDC) trial study group. Lancet 342:1441–1446

    Article  CAS  PubMed  Google Scholar 

  135. (1994) A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). CIBIS investigators and committees. Circulation 90:1765–1773

  136. (1996) Effect of carvedilol on mortality and morbidity in patients with chronic heart failure. Circulation 94:592

  137. (1999) The cardiac insufficiency bisoprolol study II (CIBIS-II): a randomised trial. Lancet 353:9–13

  138. Segev A, Mekori YA (1999) The cardiac insufficiency bisoprolol study II. Lancet 353:1361

    Article  CAS  PubMed  Google Scholar 

  139. Drummond GA, Squire IB (1999) The cardiac insufficiency bisoprolol study II. Lancet 353:1361

    Article  CAS  PubMed  Google Scholar 

  140. Poole-Wilson PA (1999) The cardiac insufficiency bisoprolol study II. Lancet 353:1360–1361

    Article  CAS  PubMed  Google Scholar 

  141. Hjalmarson A, Goldstein S, Fagerberg B et al (2000) Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA 283:1295–1302

    Article  CAS  PubMed  Google Scholar 

  142. Williams B, Lacy PS, Thom SM et al (2006) Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the conduit artery function evaluation (CAFE) study. Circulation 113:1213–1225

    Article  CAS  PubMed  Google Scholar 

  143. Pedersen ME, Cockcroft JR (2006) The latest generation of beta-blockers: new pharmacologic properties. Curr Hypertens Rep 8:279–286

    Article  CAS  PubMed  Google Scholar 

  144. Pedersen ME, Cockcroft JR (2007) The vasodilatory beta-blockers. Curr Hypertens Rep 9:269–277

    Article  CAS  PubMed  Google Scholar 

  145. Krum H, Roecker EB, Mohacsi P et al (2003) Effects of initiating carvedilol in patients with severe chronic heart failure: results from the COPERNICUS Study. JAMA 289:712–718

    Article  CAS  PubMed  Google Scholar 

  146. Poole-Wilson PA, Swedberg K, Cleland JG et al (2003) Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362:7–13

    Article  CAS  PubMed  Google Scholar 

  147. Reiken S, Gaburjakova M, Gaburjakova J et al (2001) Beta-adrenergic receptor blockers restore cardiac calcium release channel (ryanodine receptor) structure and function in heart failure. Circulation 104:2843–2848

    Article  CAS  PubMed  Google Scholar 

  148. Flather MD, Shibata MC, Coats AJ et al (2005) Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J 26:215–225

    Article  CAS  PubMed  Google Scholar 

  149. Dobson JG Jr, Fray J, Leonard JL, Pratt RE (2003) Molecular mechanisms of reduced beta-adrenergic signaling in the aged heart as revealed by genomic profiling. Physiol Genom 15:142–147

    CAS  Google Scholar 

  150. White M, Roden R, Minobe W et al (1994) Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 90:1225–1238

    CAS  PubMed  Google Scholar 

  151. Xiao RP, Tomhave ED, Wang DJ et al (1998) Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest 101:1273–1282

    Article  CAS  PubMed  Google Scholar 

  152. Takagi G, Asai K, Vatner SF et al (2003) Gender differences on the effects of aging on cardiac and peripheral adrenergic stimulation in old conscious monkeys. Am J Physiol Heart Circ Physiol 285:H527–H534

    CAS  PubMed  Google Scholar 

  153. Remme WJ (2001) The carvedilol and ACE-inhibitor remodelling mild heart failure evaluation trial (CARMEN)-rationale and design. Cardiovasc Drugs Ther 15:69–77

    Article  CAS  PubMed  Google Scholar 

  154. Pitt B, Williams G, Remme W et al (2001) The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI heart failure efficacy and survival study. Cardiovasc Drugs Ther 15:79–87

    Article  CAS  PubMed  Google Scholar 

  155. Hanoune J, Pouille Y, Tzavara E et al (1997) Adenylyl cyclases: structure, regulation and function in an enzyme superfamily. Mol Cell Endocrinol 128:179–194

    Article  CAS  PubMed  Google Scholar 

  156. Iyengar R (1993) Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J 7:768–775

    CAS  PubMed  Google Scholar 

  157. Simonds WF (1999) G protein regulation of adenylate cyclase. Trends Pharmacol Sci 20:66–73

    Article  CAS  PubMed  Google Scholar 

  158. Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  CAS  PubMed  Google Scholar 

  159. Ishikawa Y, Homcy CJ (1997) The adenylyl cyclases as integrators of transmembrane signal transduction. Circ Res 80:297–304

    CAS  PubMed  Google Scholar 

  160. Okumura S, Kawabe J, Yatani A et al (2003) Type 5 adenylyl cyclase disruption alters not only sympathetic but also parasympathetic and calcium-mediated cardiac regulation. Circ Res 93:364–371

    Article  CAS  PubMed  Google Scholar 

  161. Guillou JL, Nakata H, Cooper DM (1999) Inhibition by calcium of mammalian adenylyl cyclases. J Biol Chem 274:35539–35545

    Article  CAS  PubMed  Google Scholar 

  162. Cooper DM (2003) Molecular and cellular requirements for the regulation of adenylate cyclases by calcium. Biochem Soc Trans 31:912–915

    Article  CAS  PubMed  Google Scholar 

  163. Tepe NM, Lorenz JN, Yatani A et al (1999) Altering the receptor-effector ratio by transgenic overexpression of type V adenylyl cyclase: enhanced basal catalytic activity and function without increased cardiomyocyte beta-adrenergic signalling. Biochemistry 38:16706–16713

    Article  CAS  PubMed  Google Scholar 

  164. Tepe NM, Liggett SB (1999) Transgenic replacement of type V adenylyl cyclase identifies a critical mechanism of beta-adrenergic receptor dysfunction in the G alpha q overexpressing mouse. FEBS Lett 458:236–240

    Article  CAS  PubMed  Google Scholar 

  165. Lai L, Yan L, Hu CL et al (2009) Abstract 3290: increased Type 5 adenylyl cyclase expression mediates chronic catecholamine stress via increases in oxidative stress and down-regulation of MnSOD. Circulation 120:S781

    Google Scholar 

  166. Okumura S, Takagi G, Kawabe J et al (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci USA 100:9986–9990

    Article  CAS  PubMed  Google Scholar 

  167. Okumura S, Vatner DE, Kurotani R et al (2007) Disruption of type 5 adenylyl cyclase enhances desensitization of cyclic adenosine monophosphate signal and increases Akt signal with chronic catecholamine stress. Circulation 116:1776–1783

    Article  CAS  PubMed  Google Scholar 

  168. Vatner DE, Sato N, Ishikawa Y, Kiuchi K, Shannon RP, Vatner SF (1996) Beta-adrenoceptor desensitization during the development of canine pacing-induced heart failure. Clin Exp Pharmacol Physiol 23:688–692

    Article  CAS  PubMed  Google Scholar 

  169. Vatner DE, Vatner SF, Nejima J et al (1989) Chronic norepinephrine elicits desensitization by uncoupling the beta-receptor. J Clin Invest 84:1741–1748

    Article  CAS  PubMed  Google Scholar 

  170. Gao MH, Lai NC, Roth DM et al (1999) Adenylylcyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 99:1618–1622

    CAS  PubMed  Google Scholar 

  171. Lai NC, Roth DM, Gao MH et al (2000) Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation 102:2396–2401

    CAS  PubMed  Google Scholar 

  172. Roth DM, Gao MH, Lai NC et al (1999) Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99:3099–3102

    CAS  PubMed  Google Scholar 

  173. Roth DM, Bayat H, Drumm JD et al (2002) Adenylyl cyclase increases survival in cardiomyopathy. Circulation 105:1989–1994

    Article  CAS  PubMed  Google Scholar 

  174. Takahashi T, Tang T, Lai NC et al (2006) Increased cardiac adenylyl cyclase expression is associated with increased survival after myocardial infarction. Circulation 114:388–396

    Article  CAS  PubMed  Google Scholar 

  175. Tang T, Gao MH, Lai NC et al (2008) Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling. Circulation 117:61–69

    Article  CAS  PubMed  Google Scholar 

  176. Guellich A, Gao S, Hong C et al (2010) Effects of cardiac overexpression of Type 6 adenylyl cyclase affects on the response to chronic pressure overload. Am J Physiol Heart Circ Physiol (in press)

  177. Tang T, Lai NC, Hammond HK et al (2010) Adenylyl cyclase 6 deletion reduces left ventricular hypertrophy, dilation, dysfunction, and fibrosis in pressure-overloaded female mice. J Am Coll Cardiol 55:1476–1486

    Article  CAS  PubMed  Google Scholar 

  178. Lai NC, Tang T, Gao MH et al (2008) Activation of cardiac adenylyl cyclase expression increases function of the failing ischemic heart in mice. J Am Coll Cardiol 51:1490–1497

    Article  CAS  PubMed  Google Scholar 

  179. Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346

    Article  PubMed  CAS  Google Scholar 

  180. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    Article  CAS  PubMed  Google Scholar 

  181. Wang Y, Tissenbaum HA (2006) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 127:48–56

    Article  CAS  PubMed  Google Scholar 

  182. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  CAS  PubMed  Google Scholar 

  183. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    Article  CAS  PubMed  Google Scholar 

  184. Guarente L (2005) Calorie restriction and SIR2 genes–towards a mechanism. Mech Ageing Dev 126:923–928

    Article  CAS  PubMed  Google Scholar 

  185. Chen D, Steele AD, Lindquist S, Guarente L (2005) Increase in activity during calorie restriction requires Sirt1. Science 310:1641

    Article  CAS  PubMed  Google Scholar 

  186. Yan L, Vatner DE, O’Connor JP et al (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258

    Article  CAS  PubMed  Google Scholar 

  187. Yan L, Williams JG, Dillinger J et al (2009) Abstract 1625: Type 5 adenylyl cyclase disruption enhances exercise capacity not due to improved cardiac output, but rather to resistance to oxidative stress in skeletal muscle. Circulation 120:S532

    Article  Google Scholar 

  188. Ho D, Zhao X, Stanley WC et al (2010) Abstract: inhibition of Adenylyl Cyclase Type 5, as a Novel Therapeutic Approach for Obesity and Diabetes. American Diabetes Association Scientific Sessions 2010

  189. Iwamoto T, Okumura S, Iwatsubo K et al (2003) Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 278:16936–16940

    Article  CAS  PubMed  Google Scholar 

  190. Kheirbek MA, Britt JP, Beeler JA, Ishikawa Y, McGehee DS, Zhuang X (2009) Adenylyl cyclase type 5 contributes to corticostriatal plasticity and striatum-dependent learning. J Neurosci 29:12115–12124

    Article  CAS  PubMed  Google Scholar 

  191. Kheirbek MA, Beeler JA, Ishikawa Y, Zhuang X (2008) A cAMP pathway underlying reward prediction in associative learning. J Neurosci 28:11401–11408

    Article  CAS  PubMed  Google Scholar 

  192. Kim KS, Han PL (2009) Mice lacking adenylyl cyclase-5 cope badly with repeated restraint stress. J Neurosci Res 87:2983–2993

    Article  CAS  PubMed  Google Scholar 

  193. Kim KS, Lee KW, Baek IS et al (2008) Adenylyl cyclase-5 activity in the nucleus accumbens regulates anxiety-related behavior. J Neurochem 107:105–115

    Article  CAS  PubMed  Google Scholar 

  194. Kim KS, Kim J, Back SK, Im JY, Na HS, Han PL (2007) Markedly attenuated acute and chronic pain responses in mice lacking adenylyl cyclase-5. Genes Brain Behav 6:120–127

    Article  CAS  PubMed  Google Scholar 

  195. Kim KS, Lee KW, Im JY et al (2006) Adenylyl cyclase type 5 (AC5) is an essential mediator of morphine action. Proc Natl Acad Sci USA 103:3908–3913

    Article  CAS  PubMed  Google Scholar 

  196. Isakovic AJ, Abbott NJ, Redzic ZB (2004) Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. J Neurochem 90:272–286

    Article  CAS  PubMed  Google Scholar 

  197. Brink JJ, Lepage GA (1964) Metabolism and distribution of 9-Beta-D-arabinofuranosyladenine in mouse tissues. Cancer Res 24:1042–1049

    CAS  PubMed  Google Scholar 

  198. Li M, Chiu JF, Mossman BT, Fukagawa NK (2006) Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats. J Biol Chem 281:40429–40439

    Article  CAS  PubMed  Google Scholar 

  199. Bakalyar HA, Reed RR (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406

    Article  CAS  PubMed  Google Scholar 

  200. Feinstein PG, Schrader KA, Bakalyar HA et al (1991) Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci USA 88:10173–10177

    Article  CAS  PubMed  Google Scholar 

  201. Gao BN, Gilman AG (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA 88:10178–10182

    Article  CAS  PubMed  Google Scholar 

  202. Ishikawa Y, Katsushika S, Chen L, Halnon NJ, Kawabe J, Homcy CJ (1992) Isolation and characterization of a novel cardiac adenylylcyclase cDNA. J Biol Chem 267:13553–13557

    CAS  PubMed  Google Scholar 

  203. Katsushika S, Chen L, Kawabe J et al (1992) Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci USA 89:8774–8778

    Article  CAS  PubMed  Google Scholar 

  204. Premont RT, Chen J, Ma HW, Ponnapalli M, Iyengar R (1992) Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases. Proc Natl Acad Sci USA 89:9809–9813

    Article  CAS  PubMed  Google Scholar 

  205. Yoshimura M, Cooper DM (1992) Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci USA 89:6716–6720

    Article  CAS  PubMed  Google Scholar 

  206. Cali JJ, Zwaagstra JC, Mons N, Cooper DM, Krupinski J (1994) Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J Biol Chem 269:12190–12195

    CAS  PubMed  Google Scholar 

  207. Watson PA, Krupinski J, Kempinski AM, Frankenfield CD (1994) Molecular cloning and characterization of the type VII isoform of mammalian adenylyl cyclase expressed widely in mouse tissues and in S49 mouse lymphoma cells. J Biol Chem 269:28893–28898

    CAS  PubMed  Google Scholar 

  208. Paterson JM, Smith SM, Harmar AJ, Antoni FA (1995) Control of a novel adenylyl cyclase by calcineurin. Biochem Biophys Res Commun 214:1000–1008

    Article  CAS  PubMed  Google Scholar 

  209. Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74:5482–5486

    Article  CAS  PubMed  Google Scholar 

  210. Holgate ST, Lewis RA, Austen KF (1980) Role of adenylate cyclase in immunologic release of mediators from rat mast cells: agonist and antagonist effects of purine- and ribose-modified adenosine analogs. Proc Natl Acad Sci USA 77:6800–6804

    Article  CAS  PubMed  Google Scholar 

  211. Johnson RA, Desaubry L, Bianchi G et al (1997) Isozyme-dependent sensitivity of adenylyl cyclases to P-site-mediated inhibition by adenine nucleosides and nucleoside 3’-polyphosphates. J Biol Chem 272:8962–8966

    Article  CAS  PubMed  Google Scholar 

  212. Gille A, Lushington GH, Mou TC, Doughty MB, Johnson RA, Seifert R (2004) Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J Biol Chem 279:19955–19969

    Article  CAS  PubMed  Google Scholar 

  213. Rottlaender D, Matthes J, Vatner SF, Seifert R, Herzig S (2007) Functional adenylyl cyclase inhibition in murine cardiomyocytes by 2′(3′)-O-(N-methylanthraniloyl)-guanosine 5′-[gamma-thio]triphosphate. J Pharmacol Exp Ther 321:608–615

    Article  CAS  PubMed  Google Scholar 

  214. Gottle M, Geduhn J, Konig B, Gille A, Hocherl K, Seifert R (2009) Characterization of mouse heart adenylyl cyclase. J Pharmacol Exp Ther 329:1156–1165

    Article  PubMed  CAS  Google Scholar 

  215. Iwatsubo K, Minamisawa S, Tsunematsu T et al (2004) Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration. J Biol Chem 279:40938–40945

    Article  CAS  PubMed  Google Scholar 

  216. Levy DE, Bao M, Cherbavaz DB et al (2003) Metal coordination-based inhibitors of adenylyl cyclase: novel potent P-site antagonists. J Med Chem 46:2177–2186

    Article  CAS  PubMed  Google Scholar 

  217. Levy D, Bao M, Tomlinson J, Scarborough R (2002) Hydroxamate based inhibitors of adenylyl cyclase. Part 2: the effect of cyclic linkers on P-site binding. Bioorg Med Chem Lett 12:3089–3092

    Article  CAS  PubMed  Google Scholar 

  218. Levy D, Marlowe C, Kane-Maguire K et al (2002) Hydroxamate based inhibitors of adenylyl cyclase. Part 1: the effect of acyclic linkers on P-site binding. Bioorg Med Chem Lett 12:3085–3088

    Article  CAS  PubMed  Google Scholar 

  219. Ren J, Dong F, Cai GJ et al (2010) Interaction between age and obesity on cardiomyocyte contractile function: role of leptin and stress signaling. PLoS One 5:e10085

    Article  PubMed  CAS  Google Scholar 

  220. Hall SA, Cigarroa CG, Marcoux L, Risser RC, Grayburn PA, Eichhorn EJ (1995) Time coure of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol 25:1154–1161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants HL095888, HL102472, HL069020, AG027211, HL033107, HL093481, HL101420 and HL069752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Vatner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, D., Yan, L., Iwatsubo, K. et al. Modulation of β-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Fail Rev 15, 495–512 (2010). https://doi.org/10.1007/s10741-010-9183-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9183-5

Keywords

Navigation