Skip to main content

Advertisement

Log in

Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aglyamov SR et al (2007) Model-based reconstructive elasticity imaging using ultrasound. Int J Biomed Imaging 2007:35830. doi:10.1155/2007/35830

    Article  Google Scholar 

  • Alviano F et al (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. doi:10.1186/1471-213x-7-11

    PubMed Central  PubMed  Google Scholar 

  • Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res: 266–280

  • Bahlous A, Kalai E, Hadj Salah M, Bouzid K, Zerelli L (2006) Biochemical markers of bone remodeling: recent data of their applications in managing postmenopausal osteoporosis. Tunis Med 84:751–757

  • Balcerzak M, Hamade E, Zhang L, Pikula S, Azzar G, Radisson J, Bandorowicz-Pikula J, Buchet R (2003) The roles of annexins and alkaline phosphatase in mineralization process. Acta Biochim Pol 50(4):1019–1038

  • Baxter RC (2000) Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities. Am J Physiol Endocrinol Metab 278:E967–E976

    CAS  PubMed  Google Scholar 

  • Chen MQ, Wang X, Ye ZY, Zhang Y, Zhou Y, Tan WS (2011) A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Biomaterials 32:7532–7542. doi:10.1016/j.biomaterials.2011.06.054

    Article  CAS  PubMed  Google Scholar 

  • Cho YE et al (2010) Red yeast rice stimulates osteoblast proliferation and increases alkaline phosphatase activity in MC3T3-E1 cells. Nutr Res 30:501–510. doi:10.1016/j.nutres.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  • Ducy P et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452. doi:10.1038/382448a0

    Article  CAS  PubMed  Google Scholar 

  • Farley JR, Hall SL, Tanner MA, Wergedal JE (1994) Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res 9:497–508. doi:10.1002/jbmr.5650090409

    Article  CAS  PubMed  Google Scholar 

  • Franceschi RT, Ge C, Xiao G, Roca H, Jiang D (2009) Transcriptional regulation of osteoblasts. Cells Tissues Organs 189:144–152. doi:10.1159/000151747

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt H, Hermann C, Knittel R, Richter-Reichhelm M, Siegel A, Witzenrath W (2010) Gesundes Kinzigtal Integrated Care: improving population health by a shared health gain approach and a shared savings contract. Int J Integr Care 10:e046

    Google Scholar 

  • Kim SH et al (2009) Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol 80:1815–1823. doi:10.1902/jop.2009.090249

    Article  PubMed  Google Scholar 

  • Leyva-Leyva M et al (2013) Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. Stem Cells Dev 22:1275–1287. doi:10.1089/scd.2012.0359

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2014) The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells. J Mol Histol. doi:10.1007/s10735-014-9594-z

    Google Scholar 

  • Marcus AJ, Coyne TM, Rauch J, Woodbury D, Black IB (2008) Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76:130–144. doi:10.1111/j.1432-0436.2007.00194.x

    Article  CAS  PubMed  Google Scholar 

  • Musial K, Fornalczyk K, Zwolinska D (2008) Osteopontin (OPN), PDGF-BB (platelet-derived growth factor) and BMP-7 (bone morphogenetic protein) as markers of atherogenesis in children with chronic kidney disease (CKD) treated conservatively-preliminary results Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego 24 (4):25–27

  • Ozeki K, Aoki H, Fukui Y (2008) The effect of adsorbed vitamin D and K to hydroxyapatite on ALP activity of MC3T3-E1 cell. J Mater Sci Mater Med 19:1753–1757. doi:10.1007/s10856-007-3288-y

    Article  CAS  PubMed  Google Scholar 

  • Parolini O et al (2008) Concise review: Isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26:300–311. doi:10.1634/stemcells.2007-0594

    Article  PubMed  Google Scholar 

  • Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi RT (2006) BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res 21:637–646. doi:10.1359/jbmr.060109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007

    CAS  PubMed  Google Scholar 

  • Schneider GB, Whitson SW, Cooper LF (1999) Restricted and coordinated expression of β3-integrin and bone sialoprotein during cultured osteoblast differentiation. Bone 24:321–327

    Article  CAS  PubMed  Google Scholar 

  • Thangakumaran S, Sudarsan S, Arun KV, Talwar A, James JR (2009) Osteoblast response (initial adhesion and alkaline phosphatase activity) following exposure to a barrier membrane/enamel matrix derivative combination. Indian J Dent Res 20:7–12

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H et al (2010) Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res 106:1613–1623. doi:10.1161/CIRCRESAHA.109.205260

    Article  CAS  PubMed  Google Scholar 

  • Wang SY et al (2009) Vertical alveolar ridge augmentation with beta-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30:2489–2498. doi:10.1016/j.biomaterials.2008.12.067

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Ye ZY, Zhou Y, Tan WS (2011) AICAR, a small chemical molecule, primes osteogenic differentiation of adult mesenchymal stem cells. Int J Artif Organs 34:1128–1136. doi:10.5301/Ijao.5000007

    Article  CAS  PubMed  Google Scholar 

  • Wu B et al (2013) Lentiviral delivery of biglycan promotes proliferation and increases osteogenic potential of bone marrow-derived mesenchymal stem cells in vitro. J Mol Histol 44:423–431. doi:10.1007/s10735-013-9497-4

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Liu HL, Chen JH (2007) Modeling dynamic cerebral blood volume changes during brain activation on the basis of the blood-nulled functional MRI signal. NMR Biomed 20:643–651. doi:10.1002/nbm.1116

    Article  Google Scholar 

  • Yakar S et al (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Investig 110:771–781. doi:10.1172/JCI15463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Jiang M, Miao D (2011) Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One 6:e16789. doi:10.1371/journal.pone.0016789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J et al (2009) Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45:517–527. doi:10.1016/j.bone.2009.05.026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81271109) and project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Chen.

Additional information

Yuli Wang and Ying Yin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yin, Y., Jiang, F. et al. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J Mol Hist 46, 13–20 (2015). https://doi.org/10.1007/s10735-014-9600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-014-9600-5

Keywords

Navigation